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量子コンピューティングへの自動チューニングの適用と評価 
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概要：本報告は，量子コンピュータおよび関連技術における自動チューニング(AT)技術の適用の有用性を調査する．

また，解の高精度化および実行時間の高速化を目的とする．本報告では量子関連技術に焦点を当て，量子インスパイ

ア型のアニーリング方式で用いられる QUBO 式中の制約項の係数や，ゲート方式の GPU シミュレータにおけるスレ

ッド数などをチューニング対象のパラメータとする．AT 適用の前段階として，本報告ではチューニング対象のパラ

メータが解の精度や実行時間にどの程度影響するのかを調査した．実験結果から，チューニング対象のパラメータが

解の精度や実行時間に明らかに影響を及ぼすことを確認し，その影響が問題サイズによって異なることが分かった． 
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1. はじめに 

次世代の計算機として注目されている量子コンピュー

タは，冷却装置のコストが大きく，技術的に量子ビット数

が限られるなど，実用化の観点からは課題が残る．そのた

め，現状では量子コンピュータそのものではなく，量子関

連技術としての量子インスパイア型イジングマシンや，量

子回路シミュレータの実用化を目指す動きがある． 
量子インスパイア型イジングマシンとは，量子コンピュ

ータの動作原理である量子効果をデジタル回路で模倣する

ことで，常温で動作可能であり，低コストかつ高スケーラ

ビリティを実現した計算機である．その 1 つとして，日立

製作所の山岡らにより，CMOS アニーリングマシン[1][2]が
提案されている． 

日本では，日立，富士通，東芝の 3 社によって量子イン

スパイア型アニーリングマシンの研究・開発が行われてい

る．アニーリングマシンはいくつかの組合せ最適化問題に

おいて，従来の計算機での実行に対する優位性を示すこと

が期待されている．例えば，組合せ最適化問題の中でもク

ラスタリングは多岐に渡る応用があるため，量子コンピュ

ータや関連技術に適用が期待されている． 
著者らは数値計算プログラムを中心に，プログラム上の

性能パラメータを自動チューニングする技術である，ソフ

トウェア自動チューニング（AT）の研究を行ってきた[3]．
AT が取り扱う問題では，教師あり学習，かつ，分類問題と

なることが多いため，クラスタリングが AT に利用できる

と予想される．また，AT で必要とされるデータは一般に大

規模となることが多く，性能向上の観点からクラスタリン

グの高速化，および高精度化が求められる．そのため，例

えば CMOS アニーリングマシンによりクラスタリングが

高速化されれば，AT の適用が期待できる．我々は，前回の

報告[4]において，最小頂点被覆問題での CMOS アニーリ

ングマシンの性能評価を行ってきた． 
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本研究は，量子コンピュータおよび関連技術における自

動チューニング技術の適用の有用性を調査し，解の高精度

化および実行時間の高速化を目的とする．本報告では量子

関連技術に焦点を当て，量子インスパイア型のアニーリン

グ方式で用いられる QUBO 式中の制約項の係数や，ゲート

方式の GPU シミュレータにおけるスレッド数などをチュ

ーニング対象のパラメータとする． 
本報告の構成は以下のとおりである．2 章でアニーリン

グ方式における自動チューニング対象，3 章でゲート方式

における自動チューニング対象について解説する．4 章は，

2 章および 3 章で登場した性能パラメータを変化させた場

合にどの程度の性能変動があるかを示す．最後に 5 章で本

報告のまとめを行う． 

2. アニーリング方式での自動チューニング 

アニーリングマシンでは，頂点と辺で構成される無向グ

ラフであるイジングモデルによって問題を表現する．マシ

ンによってそのグラフの構造が異なるため，実装の際には

グラフの特徴を理解することが必要である．表 1 に代表的

なアニーリングマシンの一覧を示す． 
 

表 1 代表的なアニーリングマシン 
名称 開発会社 実装方式 搭載 

ビット数 
計算グラ

フ 

D-Wave Advantage [5] D-Wave 
Systems 

QPU 5,000 ペガサス 
グラフ 

CMOS アニーリング 
マシン 

日立製作所 専用回路 
GPU 

147,456 
262,144 

キング 
グラフ 
 

FujitsuDA3Solver
（Digital Annealer）
[6] 

富士通 専用回路 100,000 完全グラ

フ 

SBM PoC 版 
（シミュレーテッド 
分岐マシン）[7] 

東芝 FPGA 10,000 完全グラ

フ 
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ここで，実装方式はアニーリングを実現するために用い

るハードウェア，搭載ビット数は計算に利用可能な量子ビ

ットに相当する数，計算グラフはアニーリングマシンでイ

ジングモデルを表現するために用いるグラフを表している． 
表 1 からわかるように，CMOS アニーリングマシンなど

の量子インスパイア型イジングマシンは，量子アニーリン

グマシンである D-Wave Advantage よりも計算ビットを多

く利用できるという利点がある．また，CMOS アニーリン

グマシンの計算グラフとして採用されているキンググラフ

は，完全グラフと比較すると最適化問題の埋め込みに工夫

が必要となるものの，疎結合グラフであるためスケールが

可能である．一方，完全グラフは最適化問題の埋め込みが

容易であるという特徴がある． 
図 1 にアニーリングマシンで最適化問題を解く場合の処

理手順を示す． 
1. 最適化問題 

 最初に解きたい最適化問題を選定する．アニー

リングマシンは組み合せ最適化問題や二次計画問

題などのイジングモデルで表現可能な最適化問題

を解くことができる． 
2. イジングモデル 

 アニーリングマシンは，入力としてイジングモ

デルと呼ばれる計算モデルのパラメータを受け取

る必要があるため，最適化問題をイジングモデル

で表現する．イジングモデルは（1）式のエネルギ

ー関数で表される． 
 𝐻 ൌ෍𝐽௜௝𝜎௜𝜎௝௜ஷ௝ ൅෍ℎ௜𝜎௜௜            ሺ1ሻ 
 
 ここで，𝜎௜はスピン状態，𝐽௜௝は相互作用（二体の

パラメータ），ℎ௜は磁場（一体のパラメータ）を表

し，𝜎௜ ∈ ሼെ1,൅1ሽである．アニーリングマシンを最

適化問題に適用する際は，マシンへの入力として

相互作用と磁場を与え，最適化問題の解としてス

ピンの状態を出力として受け取る．イジングモデ

ルの表現に用いる計算グラフでは，相互作用が計

算グラフの辺に付与されるパラメータ，磁場が計

算グラフの頂点に付与されるパラメータとなる． 
3. マシン実行 

 アニーリングマシンの実行は，実機を直接実行

する場合と API (Application Programming Interface)
を介して実行する場合の 2 通りがある．いずれも

マシンへの入力として磁場と相互作用のパラメー

タを与える． 
4. スピン取得 

 アニーリングマシンの実行後に座標毎のスピン

状態が得られる．このスピン状態の集合が最適化

問題の解に対応する． 
 

 
図 1 アニーリング方式の処理手順 

 
図 1 の赤字で示すように，アニーリング方式の処理中に

出てくるチューニング対象のパラメータとしては，イジン

グモデルのエネルギー関数における各項の重みや，アニー

リング実行時の初期温度などのアニーリングパラメータな

どが挙げられる． 
具体例として，（2）式で表される最小頂点被覆問題を

CMOS アニーリングマシンで解く際のチューニング対象と

なるパラメータを表 2 に示す． 
 𝐻 ൌ 𝑤௔ ෍ ሺ1 െ 𝑥௨ሻሺ1 െ 𝑥௩ሻሺ௨,௩ሻ∈ா ൅ 𝑤௕ ෍ 𝑥௩௩∈௏ᇱ            ሺ2ሻ 

 
 表 2 最小頂点被覆問題を CMOS アニーリングマシン

で解く際のチューニング対象となるパラメータ 
パラメータ名 説明 
Wa 制約項の重み 
Wb 最適化項の重み 
chain_strength チェインの強さ 
temperature_num_steps アニーリングのステップ数 
temperature_step_length アニーリングのステップ長 
temperature_initial アニーリングの初期温度 
temperature_target アニーリングの最終温度 

 
ここで，𝑤௔ ,𝑤௕は 0 より大きい定数であり，第一項が制

約項，第二項が最適化項である．また，𝑥 ∈ ሼ0,1ሽはバイナリ

変数，𝐸は問題グラフの辺の集合，𝑉′は問題グラフの頂点被

覆集合を表す．なお，無向グラフにおいて，全ての枝𝑒 ∈ 𝐸
の少なくとも一方が𝑉ᇱ ∈ 𝑉に含まれているとき，𝑉′を頂点

被覆と呼ぶ．最小頂点被覆問題とは，頂点被覆集合の要素

数|𝑉′|が最小となる𝑉′を求める問題である． 
図 2 に示す 5 頂点のグラフでは，赤く塗られた 2 頂点が

最小頂点被覆となる例である． 
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図 2 最小頂点被覆問題の例 
 

3. ゲート方式での自動チューニング 

ゲート方式のマシンでは，解く問題を量子回路モデルに

落とし込んで問題を解く．図 3 にゲート方式で問題を解く

場合の処理手順を示す． 
 

 
図 3 ゲート方式の処理手順 

 
1. 最適化問題 

アニーリング方式と同様に最初に解く問題を選定

する．こちらの方式も解の状態はスピン状態とし

て得られるため，解が 0 と 1 の組み合わせで表現

できる 3-SAT などの組み合せ最適化問題などを解

くことができる． 
2. 量子回路モデル 

ゲート方式では，解く問題毎に量子回路モデルを

考える必要がある．これはアニーリング方式では

イジングモデルに相当する．多くの量子回路モデ

ルは，量子状態の重ね合わせで全て解の状態を網

羅し，ゲート操作を加えることによって，目的の

解の状態のみの観測確率を上げるようなモデルに

なっている． 
3. 実行 

ゲート方式の実行は実機を実行する場合とシミュ

レータを実行する場合の 2 通りがある．シミュレ

ータ実行の場合は，ライブラリによっては GPU 
(Graphics Processing Unit)を用いてより高速な実行

が可能である． 
4. 量子状態取得 

実行後には各量子状態の観測確率が得られる．こ

の観測確率の高い量子状態に対応する解が，問題

の解となる． 
 

図 3 の赤字で示すように，ゲート方式の処理中に出てく

るチューニング対象のパラメータとしては，量子回路シミ

ュレータに限定すると，実行時の CPU/GPU スレッド数や

データブロック数などが挙げられる． 
具体例として，cuQuantum [8]で量子シミュレーションを

解く際のチューニング対象となるパラメータを表 3 に示す． 
 
表 3 cuQuantum で量子シミュレーションを解く際のチュ

ーニング対象となるパラメータ 
パラメータ名 説明 
max_fused_gate_size fused_gate 毎の最大量子ビット数 
cpu_threads CPU 実行時に使用するスレッド数 
use_gpu GPU を使うかどうか 
gpu_mode 値が 0 の場合に CUDA，それ以外の値

の場合に cuStateVec ライブラリを使用 
gpu_state_threads CUDA ブロック毎のスレッド数 
gpu_data_blocks GPU で使用するデータブロック数 

 

4. 性能評価 

4.1 実験環境 
本報告での，アニーリング方式，ゲート方式の実験環境を

それぞれ表 4，表 5 に示す． 
 

表 4 アニーリング方式の実験環境 
利用マシン及び 
ライブラリ 

説明 

CMOS アニーリン
グマシン [9] 

• Annealing Cloud Web API v2 を使用 
• マシンタイプは GPU 版    

（32bit / float） 
MacBookAir 
（macOS Big Sur） 

• Python 実行用のマシン 
• CPU：1.6 GHz，2 Core，Intel Core i5 
• メモリ：8 GB 

Amplify [10] • マシン利用のためのライブラリ 
• Version 0.5.13 
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表 5 ゲート方式の実験環境 

利用マシン及び 
ライブラリ 

説明 

スーパーコンピュータ 
「不老」TypeⅡサブシ
ステム [11] 
（1 ノード） 

• FUJITSU Server PRIMERGY 
CX2570 M5 

• CPU：2.10-3.90 GHz，20 
core，Intel Xeon Gold 6230 

• GPU：NVIDIA Tesla V100 
SXM2 

• メモリ：384 GiB 
cuQuantum • 量子回路シミュレータ実行用

のマシン 
• NVIDIA 製の SDK 

 
4.2 実験結果 
4.2.1 アニーリング方式 
 一辺の長さ𝑁 ൌ 7,8の正方格子グラフの最小頂点被覆問

題において，チューニングパラメータ𝑤௔ ,𝑤௕, chain_strength
を，それぞれ0.0~2.0の範囲で変化させた時の精度変化を図

4〜9 に示す． 
なお，解の精度の評価指標として最適解解答率を用いて

いる．本実験ではアニーリングマシンの実行回数を 10 回

とした． 
 

最適解解答率 ൌ 最適解が得られた回数

アニーリングマシンの実行回数
           ሺ3ሻ 

 
図 4 一辺の長さ N=8， 𝑤௕ ൌ 1.0，chain_strength=1.0 の 
最小頂点被覆問題において，𝑤௔ ൌ 0.0~2.0と変化させた 

時の最適解解答率の推移 

 

図 5 一辺の長さ N=8， 𝑤௔ ൌ 1.0，chain_strength=1.0 の 
最小頂点被覆問題において，𝑤௕ ൌ 0.0~2.0と変化させた時

の最適解解答率の推移 

 

図 6 一辺の長さ N=8， 𝑤௔ ൌ 1.0，𝑤௕=1.0 の最小頂点 
被覆問題において，chain_strength ൌ 0.0~2.0と変化させた

時の最適解解答率の推移 
 

 

図 7 一辺の長さ N=7， 𝑤௕ ൌ 1.0，chain_strength=1.0 の 
最小頂点被覆問題において，𝑤௔ ൌ 0.0~2.0と変化させた時

の最適解解答率の推移 
 

 

図 8 一辺の長さ N=7， 𝑤௔ ൌ 1.0，chain_strength=1.0 の 
最小頂点被覆問題において，𝑤௕ ൌ 0.0~2.0と変化させた時

の最適解解答率の推移 
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図 9 一辺の長さ N=7， 𝑤௔ ൌ 1.0，𝑤௕=1.0 の最小頂点 
被覆問題において，chain_strength ൌ 0.0~2.0と変化させた

時の最適解解答率の推移 
 

以上の結果より，パラメータ 1 つを取っても，アニーリ

ングマシンの解の精度に影響があることは明らかである． 
図 4，図 7 を比較すると，N=8 では0.5 ൏ 𝑤௔で 80[%]以上

の最適解解答率を得られているが，N=7 では0.3 ൏ 𝑤௔ ൏ 0.8
で 最 適 解 回 答 率 90[%] 以 上 と な っ て い る ． 𝑤௕ や

chain_strength の値を変化させたときも同様のことが起き

ていることから，同じ問題においても問題サイズが変わる

とパラメータの最適値が変化するということがわかる． 
また N=8 と比べて全体的に N=7 の最適解回答率が低い

のは，最小頂点被覆問題の最適解をアニーリングマシンで

導くに当たって，一辺の長さが奇数の正方格子グラフの問

題が偶数のものよりも難しいことに起因する．これは，奇

数の問題が最適解と非常に近しい準最適解を持つため，ア

ニーリングマシンでは後者の局所解で安定してしまうこと

があるからである． 
 
4.2.2 ゲート方式 

ここでは，杉﨑らにより提供された，波動関数の時間発

展量子シミュレーションのベンチマーク（以降，量子シミ

ュレーションベンチマーク）を用いて，性能評価を行った．

ここでは，量子ビット数=8, 10, 16, 18 の波動関数の時間発

展量子シミュレーションにおいて，チューニングパラメー

タ max_fused_gate_size を 2, 3, 4，gpu_mode を 0, 1 の範囲で

変化させた時の実行時間推移を図 10〜13 に示す． 
本実験の評価指標としては，シミュレーションの実行時

間を用いた． 

 

図 10 量子ビット数=8[bit]の量子シミュレーションベン

チマークで max_fused_gate のサイズと gpu_mode を 
変更した時の実行時間の推移 

 

 
図 11 量子ビット数=10[bit]の量子シミュレーションベン

チマークで max_fused_gate のサイズと gpu_mode を変更

した時の実行時間の推移 
 

 
図 12 量子ビット数=16[bit]の量子シミュレーションベン

チマークで max_fused_gate のサイズと gpu_mode を変更

した時の実行時間の推移 
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図 13 量子ビット数=18[bit]の量子シミュレーションベン

チマークで max_fused_gate のサイズと gpu_mode を変更

した時の実行時間の推移 
 

それぞれの結果で，最も実行時間が短いものとデフォル

ト実行（gpu_mode=0，max_fused_gate_size=2） の実行時間

を比べると，表 6 のようになる． 
 

表 6 デフォルト実行時間と最短実行時間の比較൬高速化率 ൌ デフォルト実行時間

最短実行時間
൰ 

量子ビッ
ト数[bit] 

デフォルト
実行時間[s] 

最短実行時間[s] 高速化率 

8 2.17 2.02 1.07 
10 6.60 5.50 1.20 
16 48.13 47.40 1.01 
18 100.27 85.70 1.17 

 
表 6 より，どの量子ビット数においても，チューニング

パラメータを変動させたときに実行時間が変化している．

また，10[bit]のシミュレーションにおいて，デフォルト実行

時間と最短実行時間の比率（高速化率）が最も大きい 1.20
倍となった． 

一方，パラメータを変動させると性能が悪くなる場合も

ある．例えば，16[bit]のシミュレーションにおいて，

max_fused_gate_size=3，gpu_mode=1 の場合は高速化率=0.86
となった． 
 

5. おわりに 

本報告では，CMOS アニーリングマシンによって正方格

子グラフ上の最小頂点被覆問題，cuQuantum によって量子

シミュレーションを実行し，それぞれ解の精度と実行時間

を評価した． 
実験の結果，チューニング対象のパラメータが，解の精

度や実行時間に明らかに影響を及ぼすことを確認し，その

影響は問題サイズによって異なることが分かった．このこ

とから，この性能パラメータに対する AT の必要性がある

といえる． 
本実験ではベンチマーク問題として最小頂点被覆問題

と波動関数の時間発展シミュレーションの 2 つを用いた．

これらは，どちらもイジングモデルや量子回路モデルとい

った一般的な計算モデルを使用しているため，本実験のよ

うな結果が生じることは特殊ではなく，別の問題を扱う際

にも生じると予測される．そのため，この両モデルを取り

扱う際に現れる性能パラメータのチューニングは重要な課

題であると考える． 
今後はアニーリング方式，および，ゲート方式の両方式

の計算機へAT技術を適用する方式を検討する必要がある．

例えば著者らは，反復解法の前処理選択の問題において，

疎行列の形状，非零要素数，および，行列サイズの情報を

画像化して機械学習をさせることで，AI 技術を AT 技術に

適用させる手法[12]の提案を行っている．同様に，量子回路

シミュレーションの特徴を画像化し，性能に関するパラメ

ータの最適化を AI にさせることで，新しい AT 機構の開発

が可能かもしれない．これらの性能パラメータのチューニ

ングを自動化する AT 機構の開発と，更なる性能評価を行

っていく予定である． 
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