BIRLIEF RRRE
IPSJ SIG Technical Report

#F

R 2272 Osni Marques® Yang Liu®? 2% #th? KH F2

BIE BUEETR S 4 77 VICid,. ZOMBRICHE L 5 X 22 DRIRX=ZDBDHDIENE WV, 7477
DEVHRERE2720I121F, ZDNTR—RDF 2 —=V PPN ETH 2, LIL. ZDOXI T RA—X&
DF 2 —=> 7%, EFNRIESZTIUIRETH 2, 2T BIEHE S 4 75V ok m ExE 3
72DIZ, VI M2 TI&kDF— b Fa—=V T (AT) BRI TV %, ABSETIZ. DOE @ Exascale
Computing Project THR XN AT 7L — ALY —2TH % GPTune DFELZHPT 2, £/, HEHE
547590 LTLAL#bATWS ScaLAPACK _EdDv—F > %Wz GPTune O@EIGHI %R .

Abstract: Numerical libraries often have many parameters that impact its performance. To obtain high
performance of the libraries, tuning the parameters are required. However, it is difficult to tune such parame-
ters without special knowledge on them. Software auto-tuning(AT), therefore, is one of promising approaches
to establish high performance for numerical libraries. In this study, we explain the methodology of GPTune,
which is an AT framework developed by DOE’s Exascale Computing Project. In addition, we show an ex-
ample of adaptation for the GPTune with a routine on ScaLAPACK, which is one of widely-used numerical

M E

N
N

N

i

i)

INTA—=REEHF 2 —Z=> I8 T B CPTune D1EgEFT

2

Performance Evaluation of GPTune for Parameter Auto-Tuning

libraries.

1. Introduction

In High Performance Computing (HPC), software often
has many parameters that impact its performance. How-
ever, it is difficult to determine optimal values for such
parameters in an impromptu way. The automatic tun-
ing — autotuning — of parameters is therefore an area of
great interest.

There is a rich research history in the field of autotun-
ing [5]. Initially, the focus was on parameter tuning within
numerical libraries [3] [8] [4]. Presently, this autotuning
concept has expanded into machine learning, specifically
targeting the tuning of hyperparameters. Consequently,
autotuning remains a pivotal technology.

The purpose of this work is to understand the method-
ology of GPTune [1] [6], which is an autotuning framework
developed by DOE’ s Exascale Computing Project, and

use the framework in a set of applications of interest. For

1
2
3

Graduate School of Informatics, Nagoya University
Information Technology Center, Nagoya University
Lawrence Berkeley National Laboratory

) morishita@hpc.itc.nagoya-u.ac.jp

© 1959 Information Processing Society of Japan

the target numerical library, we choose ScaLAPACK [2],
which is one of widely-used numerical libraries on super-
computer environments.

This report is organized as follows. In Section2, a rough
function of GPTune is explained. Section 3 is performance
evaluation of autotuning by GPtune. Section 4 give a con-

clusion in this report.

2. GPTune

GPTune [1] [6] is an autotuning framework that solves
an underlying black-box optimization problem, using sur-
rogate modeling. GPTune uses Bayesian optimization
based on Gaussian Process regression and supports ad-
vanced features such as multi-task learning, transfer learn-
ing, multi-fidelity and objective tunings, and parameter
sensitivity analysis. GPTune targets the autotuning of
HPC codes, in particular applications that are very ex-

pensive to evaluate.

Problem description in GPTune
The following are Tuning Spaces defined by GPTune.

1

2

BIRLIEF RRRE
IPSJ SIG Technical Report

(1) Input Space

e This space defines the problems to be tuned.

e Every point in this space represents one instance of
a problem.

(2) Parameter Space

e This space defines the application parameters to be
tuned.

e A point in this space represents a combination of the
parameters.

e The tuner finds the best possible combination of pa-
rameters that minimizes the objective function as-
sociated with the application.

e The Listing 1 shows a sample code of parameter

space definition by GPTune.

parameter_space = \

Space([Real(0., 1., transform="normalize", name="x")])

Listing 1: Sample code of parameter space definition

In Listing 1, we can define arbitrary parameters,

“_»

named X In addition, types of parameter val-
ues can be specified, such as real, etc. The following
is explanation of output space of parameters.

(3) Output Space

e This space defines the objective of the application
to be optimized.

e For example, this can be runtime, memory or energy
consumption in HPC applications or prediction ac-
curacy in machine learning applications.

Objective Function

The user needs to define a (Python) function represent-
ing the objective function to be optimized in GPTune.
Listing 2 is a sample code of definition for objective func-

tion.

def objectives(point):
x = point['x']

call HPC code with parameter x

get the function value f

return [f]

Listing 2: Sample code of definition of objective function

3. Performance Evaluation

3.1 Target Problem
In this work, we have focused on the autotuning of two
algorithms implemented in ScaLAPACK [2], which are

© 1959 Information Processing Society of Japan

2X2 process grid

a1 Qg2 Q13 Qg4
_____ . azi @ azaz4

A11 Q12 113 Qg4

azs - QAs5| As3 Qsy
Ta1 G4z 1043 Q4) Qa5 31 EE 35 “3“34
153 Qs | Qss a4 Ay5 | Aq—1Q4y

B 1 Example of 2D block-cyclic distribution (Source [2])

QR and LU decompositions. These two decompositions
are basic and widely-used in mathematical computation.
Hence improvement of computation time is very crucial
for several applications.

The QR decomposition is provided with the GPTune
repository, while the LU decomposition was not provided.
In this research, we have implemented a new code as my
work.

In these two cases, the tuning parameters are the block
size (for cache memory optimization), and the process grid
size for distributed computing. Figure 1 shows an example
of 2D block-cyclic distribution.

QR decomposition is the decomposition of matrix A €
R™*"™ into the product of a mth-order orthogonal matrix
@ and a m x n matrix upper triangular matrix R. Formula

(1) shows the QR decomposition.

A=QR (1)

LU decomposition is the decomposition of matrix A €
R™™ into the product of a lower triangular matrix L and
an upper triangular matrix U. Formula (2) shows the LU

decomposition.

A=LU (2)

In ScaLAPACK, distributed parallel interfaces (subrou-
tines) for LU and QR decompositions are provided. Hence
users can implement distributed parallel numerical com-
putation by utilizing the interfaces of ScaLAPACK.

3.2 Experimental setting

We adapted GPTune in QR and LU decomposition
code. This experiment is a preliminary evaluation of abil-
ity of autotuning by GPTune.

Experiments were conducted on a PC at hand and pa-
rameter tuning was performed on a small-scale problem
before running in a massively parallel computing environ-
ment, such as distributed memory supercomputers. The
execution environment and target tuning parameters are
shown in the Table 1, 2, respectively.

In the Table 2, we choose two kinds of tunable param-

eters. First is block sizes, including two parameters for

BIRLIEF RRRE
IPSJ SIG Technical Report

1 Execution environment (proxy for a distributed environ-

ment)
Name MacBookAir (M1, 2020)
oS Ventura 13.4.1
CPU Apple M1 chip, 8 cores
Memory 8 GB

#F 2 Tuning parameters

parameter name overview parameter range
nb row block size 8 ~ 128
mb column block size 8 ~ 128
P row process grid 1~8
120 A
0.9
100 4 0.8
° ° 0.7
801
0.6
e @ [] [}
a] [] 0.5
= 60+
L] L [] [
0.4
e L] L] []
V1TSS S S¢S eSS ¢S s S Sse 0.3
* & 0 L1 L] * 0 e
0.2
204 L] L] L] (1] [] []
s 0000 e oo 000 e o0 e 0.1
L] ® @ O & % % e e e Ve
‘ : ‘ : ‘ : 0.0
20 40 60 80 100 120

B 2 Execution time for 2 tuning parameters, block size (nb,
mb) in QR decomposition. (matrix size 1000 x 1000)

row and column direction. The other is related to process
grid.

Here, the process grid size changes only row (param-
eter p). This is tunable parameter of the experiments,
since the parallel execution time affects configurations of
processor grids. The causes by time of communications
for the target routines, in this case, parallel implementa-
tions for QR and LU decompositions. In addition, size
of matrices, and configurations of matrix, i.e. n x m, af-
fect execution time. Hence it is difficult to set constant
parameters in advance.

Moreover, the block size (See Figure 1) is also tunable
parameters. In general, block size should be optimized
with respect to physical cache sizes. Hence it depends on
installation environments. The block size is also known
as crucial parameter in several numerical libraries.

We used 8 cores on CPU. The experiments were con-
ducted in an environment where p x ¢ < 8 is always sat-

isfied when the process grid size of column is q.

© 1959 Information Processing Society of Japan

L [] L

120 1= s s e 0.9

L] L] L]
L] [] [] 0.8

100 -

e o ° e O 0.7

L] o L L L]
80 e e e e 0.6

L) oe ° [
2 05

604 L] L [] (] o e
e 00 L) * 0 e o e 0.4

® o o @ 0O e 00 0o oo 00
0ie e s e s e e e e e 0.3

s e o ° o e
0.2

L] e e L] [] []

20 4
O O o . ® 0.1
; y ‘ y ' ‘ 0.0
20 40 60 80 100 120
mb

3 Execution time for 2 tuning parameters, block size (nb,
mb) in QR decomposition. (matrix size 2000 x 2000)

L] o e e e 0 [] L]
120 A e s e 0.9
LN] ® ®
e 0 L] L] L] 08
100 |
. e o o e . 07
L L L] L]
804 e L] e ¢ e e L] 0.6
LA L] ° [
2 0.5
604 L] LN] L
L) 0e e Oee o o 0.4
L L L L] [] L] o e
04—e .= 2 = e 0.3
] e | o o e
02
L] L] [] e e
20 4
e 0 @ 0.1
; : ‘ : : ‘ 0.0
20 40 60 80 100 120
mb

4 Execution time for 2 tuning parameters, block size (nb,
mb) in QR decomposition. (matrix size 3000 x 3000)

0.9
0.8
Ln et 0.7
----------- 0.6
o 0.5
0.4
3+ &S 4SS S 0SS SO 0.3
0.2

0.1

T T T T T T 0.0

5 Execution time for 2 tuning parameters, block size and
process grid (nb, p) in LU decomposition. (matrix size
1000 x 1000)

BIRLIEF RRRE
IPSJ SIG Technical Report

6 Execution time for 2 tuning parameters, block size and

process grid (nb, p) in LU decomposition. (matrix size

2000 x 2000)

7 Execution time for 2 tuning parameters, block size and

process grid (nb, p) in LU decomposition. (matrix size

3000 x 3000)

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

% 3 Optimal parameter set (nb, mb) in QR

Matrix size N | (nb, mb)
1000 (128, 24)
2000 (40, 48)
3000 (80, 56)

& 4 Optimal parameter set (nb,
Matrix size N | (nb, p)

1000 (16, 1)

2000 (64, 1)

3000 (64, 1)

© 1959 Information Processing Society of Japan

p) in LU

3.3 Result

Figures 2, 3 and 4 show the distribution of the exe-
cution time when block size nb and mb were tuned using
GPTune. Table 3 shows the optimal parameter set in QR
decomposition. Color of points in Figures 2, 3 and 4 is
normalized execution time in seconds.

From the results, when the problem size is small such as
N = 1000, the range with the lower nb value is searched,
but as the problem size increases such as N = 2000, 3000,
it can be said that the entire range is searched. In general,
the closer the block size is to square (nb = mb), the more
efficient the processing is. This result is consistent with
that fact.

Figures 5, 6 and 7 show the distribution of the exe-
cution time when block size nb and p were tuned using
GPTune. Table 4 shows the optimal parameter set in LU
decomposition. Color of points in Figures 5, 6 and 7 is
normalized execution time in seconds.

From results, for all problem sizes, processing is fastest
when row process grid p = 1. This indicates that when
the matrix to be calculated is distributed per process, it
is more efficient to split it into one dimension such as
p x g = 1 x 8, rather than into two dimensions such as

pxqg=2x4dorpxqg=4x2.
4. Conclusion

We conducted experiments by utilizing GPTune to op-
timize performance parameters for QR and LU decompo-
sitions. Our preliminary results indicate improved per-
formance compared to default parameter executions. We
elucidated the process of selecting specific tuning parame-
ters by modifying the space and objective functions within
GPTune. Furthermore, we demonstrated how to inte-
grate the target application, ScaLAPACK in our case,
with GPTune effectively. Notably, we developed origi-
nal code for parameter tuning in the LU decomposition
of ScaLAPACK using GPTune, which is a novel aspect of
our preliminary experiment. Moving forward, our future
endeavors include deploying GPTune on the Supercom-
puter "Flow” at Information Technology Center, Nagoya
University to assess its performance on the ARM architec-
ture, similar to the Supercomputer “Fugaku.” Addition-
ally, we plan to apply GPTune to various applications,
such as Fast Fourier Transform (e.g., FFTX, the exas-
cale successor to the FFTW open-source discrete FFT
package). Furthermore, we have explored hyperparam-
eter tuning for quantum-related technologies [7], such as

quantum annealers and quantum circuit simulators. The

BIRLIEF RRRE
IPSJ SIG Technical Report

adaptation and evaluation of GPTune for these purposes

constitute significant aspects of our future work.

& This work was supported by Japan Science and

Technology Agency (JST) as part of SICORP, Grant
Number JPMJSC2201.

BEXH

[1] Github - gptune/gptune.

[2] Scalapack—scalable linear algebra package.

[3] Jeff Bilmes et al. Optimizing matrix multiply using
PHIiPAC: a portable, high-performance, ansi ¢ coding
methodology. In Proceedings of the 11th international
conference on Supercomputing, pages 340-347, 1997.

[4] Takahiro Katagiri et al. ABCLib_.DRSSED: A parallel
eigensolver with an auto-tuning facility. Parallel comput-
ing, 32:231-250, 2006.

[6]) Takahiro Katagiri and Daisuke Takahashi. Japanese au-
totuning research: Autotuning languages and fft. In Pro-
ceedings of the IEEFE, pages 20562067, 2018.

[6] Yang Liu et al. Gptune: multitask learning for auto-
tuning exascale applications. In Proceedings of the 26th
ACM SIGPLAN Symposium on Principles and Practice
of Parallel Programming, page 234 — 246, 2021.

[7] Makoto Morishita et al. ®EF A Y B a—7 4 ¥ I DHH)
Fa—= 7O & 7. 2023-HPC-188:22 2, 2023.

[8] R Clint Whaley et al. Automated empirical optimizations

of software and the atlas project. Parallel computing,
27:3-35, 2001.

© 1959 Information Processing Society of Japan

