
情報処理学会研究報告
IPSJ SIG Technical Report

パラメータ自動チューニングにおけるGPTuneの性能評価

森下 誠1,a) 片桐 孝洋2 Osni Marques3 Yang Liu3 星野 哲也2 永井 亨2 河合 直聡2

概要：数値計算ライブラリには、その性能に影響を与える多くのパラメータがあることが多い。ライブラリ
の高い性能を得るためには、そのパラメータのチューニングが必要である。しかし、このようなパラメータ
のチューニングは、専門的な知識がなければ困難である。そこで、数値計算ライブラリの性能を向上させる
ために、ソフトウェアによるオートチューニング (AT)が期待されている。本研究では、DOEの Exascale

Computing Projectで開発された ATフレームワークである GPTuneの手法を説明する。また、数値計算
ライブラリとして広く使われている ScaLAPACK上のルーチンを用いた GPTuneの適応例を示す。

Performance Evaluation of GPTune for Parameter Auto-Tuning

Abstract: Numerical libraries often have many parameters that impact its performance. To obtain high
performance of the libraries, tuning the parameters are required. However, it is difficult to tune such parame-
ters without special knowledge on them. Software auto-tuning(AT), therefore, is one of promising approaches
to establish high performance for numerical libraries. In this study, we explain the methodology of GPTune,
which is an AT framework developed by DOE’s Exascale Computing Project. In addition, we show an ex-
ample of adaptation for the GPTune with a routine on ScaLAPACK, which is one of widely-used numerical
libraries.

1. Introduction

In High Performance Computing (HPC), software often

has many parameters that impact its performance. How-

ever, it is difficult to determine optimal values for such

parameters in an impromptu way. The automatic tun-

ing ‒ autotuning ‒ of parameters is therefore an area of

great interest.

There is a rich research history in the field of autotun-

ing [5]. Initially, the focus was on parameter tuning within

numerical libraries [3] [8] [4]. Presently, this autotuning

concept has expanded into machine learning, specifically

targeting the tuning of hyperparameters. Consequently,

autotuning remains a pivotal technology.

The purpose of this work is to understand the method-

ology of GPTune [1] [6], which is an autotuning framework

developed by DOE’s Exascale Computing Project, and

use the framework in a set of applications of interest. For

1 Graduate School of Informatics, Nagoya University
2 Information Technology Center, Nagoya University
3 Lawrence Berkeley National Laboratory
a) morishita@hpc.itc.nagoya-u.ac.jp

the target numerical library, we choose ScaLAPACK [2],

which is one of widely-used numerical libraries on super-

computer environments.

This report is organized as follows. In Section2, a rough

function of GPTune is explained. Section 3 is performance

evaluation of autotuning by GPtune. Section 4 give a con-

clusion in this report.

2. GPTune

GPTune [1] [6] is an autotuning framework that solves

an underlying black-box optimization problem, using sur-

rogate modeling. GPTune uses Bayesian optimization

based on Gaussian Process regression and supports ad-

vanced features such as multi-task learning, transfer learn-

ing, multi-fidelity and objective tunings, and parameter

sensitivity analysis. GPTune targets the autotuning of

HPC codes, in particular applications that are very ex-

pensive to evaluate.

Problem description in GPTune

The following are Tuning Spaces defined by GPTune.

c⃝ 1959 Information Processing Society of Japan 1

情報処理学会研究報告
IPSJ SIG Technical Report

(1) Input Space

• This space defines the problems to be tuned.

• Every point in this space represents one instance of

a problem.

(2) Parameter Space

• This space defines the application parameters to be

tuned.

• A point in this space represents a combination of the

parameters.

• The tuner finds the best possible combination of pa-

rameters that minimizes the objective function as-

sociated with the application.

• The Listing 1 shows a sample code of parameter

space definition by GPTune.

1 parameter_space = \

2 Space([Real(0., 1., transform="normalize", name="x")])

Listing 1: Sample code of parameter space definition

In Listing 1, we can define arbitrary parameters,

named “x”. In addition, types of parameter val-

ues can be specified, such as real, etc. The following

is explanation of output space of parameters.

(3) Output Space

• This space defines the objective of the application

to be optimized.

• For example, this can be runtime, memory or energy

consumption in HPC applications or prediction ac-

curacy in machine learning applications.

Objective Function

The user needs to define a (Python) function represent-

ing the objective function to be optimized in GPTune.

Listing 2 is a sample code of definition for objective func-

tion.

1 def objectives(point):

2 x = point['x']

3 # call HPC code with parameter x

4 ...

5 # get the function value f

6 ...

7

8 return [f]

Listing 2: Sample code of definition of objective function

3. Performance Evaluation

3.1 Target Problem

In this work, we have focused on the autotuning of two

algorithms implemented in ScaLAPACK [2], which are

図 1 Example of 2D block-cyclic distribution (Source [2])

QR and LU decompositions. These two decompositions

are basic and widely-used in mathematical computation.

Hence improvement of computation time is very crucial

for several applications.

The QR decomposition is provided with the GPTune

repository, while the LU decomposition was not provided.

In this research, we have implemented a new code as my

work.

In these two cases, the tuning parameters are the block

size (for cache memory optimization), and the process grid

size for distributed computing. Figure 1 shows an example

of 2D block-cyclic distribution.

QR decomposition is the decomposition of matrix A ∈
Rm×n into the product of a mth-order orthogonal matrix

Q and am×nmatrix upper triangular matrix R. Formula

(1) shows the QR decomposition.

A = QR (1)

LU decomposition is the decomposition of matrix A ∈
Rn×n into the product of a lower triangular matrix L and

an upper triangular matrix U . Formula (2) shows the LU

decomposition.

A = LU (2)

In ScaLAPACK, distributed parallel interfaces (subrou-

tines) for LU and QR decompositions are provided. Hence

users can implement distributed parallel numerical com-

putation by utilizing the interfaces of ScaLAPACK.

3.2 Experimental setting

We adapted GPTune in QR and LU decomposition

code. This experiment is a preliminary evaluation of abil-

ity of autotuning by GPTune.

Experiments were conducted on a PC at hand and pa-

rameter tuning was performed on a small-scale problem

before running in a massively parallel computing environ-

ment, such as distributed memory supercomputers. The

execution environment and target tuning parameters are

shown in the Table 1, 2, respectively.

In the Table 2, we choose two kinds of tunable param-

eters. First is block sizes, including two parameters for

c⃝ 1959 Information Processing Society of Japan 2

情報処理学会研究報告
IPSJ SIG Technical Report

表 1 Execution environment (proxy for a distributed environ-

ment)

Name MacBookAir (M1, 2020)

OS Ventura 13.4.1

CPU Apple M1 chip, 8 cores

Memory 8 GB

表 2 Tuning parameters

parameter name overview parameter range

nb row block size 8 ∼ 128

mb column block size 8 ∼ 128

p row process grid 1 ∼ 8

図 2 Execution time for 2 tuning parameters, block size (nb,

mb) in QR decomposition. (matrix size 1000× 1000)

row and column direction. The other is related to process

grid.

Here, the process grid size changes only row (param-

eter p). This is tunable parameter of the experiments,

since the parallel execution time affects configurations of

processor grids. The causes by time of communications

for the target routines, in this case, parallel implementa-

tions for QR and LU decompositions. In addition, size

of matrices, and configurations of matrix, i.e. n ×m, af-

fect execution time. Hence it is difficult to set constant

parameters in advance.

Moreover, the block size (See Figure 1) is also tunable

parameters. In general, block size should be optimized

with respect to physical cache sizes. Hence it depends on

installation environments. The block size is also known

as crucial parameter in several numerical libraries.

We used 8 cores on CPU. The experiments were con-

ducted in an environment where p × q ≤ 8 is always sat-

isfied when the process grid size of column is q.

図 3 Execution time for 2 tuning parameters, block size (nb,

mb) in QR decomposition. (matrix size 2000× 2000)

図 4 Execution time for 2 tuning parameters, block size (nb,

mb) in QR decomposition. (matrix size 3000× 3000)

図 5 Execution time for 2 tuning parameters, block size and

process grid (nb, p) in LU decomposition. (matrix size

1000× 1000)

c⃝ 1959 Information Processing Society of Japan 3

情報処理学会研究報告
IPSJ SIG Technical Report

図 6 Execution time for 2 tuning parameters, block size and

process grid (nb, p) in LU decomposition. (matrix size

2000× 2000)

図 7 Execution time for 2 tuning parameters, block size and

process grid (nb, p) in LU decomposition. (matrix size

3000× 3000)

表 3 Optimal parameter set (nb, mb) in QR

Matrix size N (nb, mb)

1000 (128, 24)

2000 (40, 48)

3000 (80, 56)

表 4 Optimal parameter set (nb, p) in LU

Matrix size N (nb, p)

1000 (16, 1)

2000 (64, 1)

3000 (64, 1)

3.3 Result

Figures 2, 3 and 4 show the distribution of the exe-

cution time when block size nb and mb were tuned using

GPTune. Table 3 shows the optimal parameter set in QR

decomposition. Color of points in Figures 2, 3 and 4 is

normalized execution time in seconds.

From the results, when the problem size is small such as

N = 1000, the range with the lower nb value is searched,

but as the problem size increases such as N = 2000, 3000,

it can be said that the entire range is searched. In general,

the closer the block size is to square (nb = mb), the more

efficient the processing is. This result is consistent with

that fact.

Figures 5, 6 and 7 show the distribution of the exe-

cution time when block size nb and p were tuned using

GPTune. Table 4 shows the optimal parameter set in LU

decomposition. Color of points in Figures 5, 6 and 7 is

normalized execution time in seconds.

From results, for all problem sizes, processing is fastest

when row process grid p = 1. This indicates that when

the matrix to be calculated is distributed per process, it

is more efficient to split it into one dimension such as

p × q = 1 × 8, rather than into two dimensions such as

p× q = 2× 4 or p× q = 4× 2.

4. Conclusion

We conducted experiments by utilizing GPTune to op-

timize performance parameters for QR and LU decompo-

sitions. Our preliminary results indicate improved per-

formance compared to default parameter executions. We

elucidated the process of selecting specific tuning parame-

ters by modifying the space and objective functions within

GPTune. Furthermore, we demonstrated how to inte-

grate the target application, ScaLAPACK in our case,

with GPTune effectively. Notably, we developed origi-

nal code for parameter tuning in the LU decomposition

of ScaLAPACK using GPTune, which is a novel aspect of

our preliminary experiment. Moving forward, our future

endeavors include deploying GPTune on the Supercom-

puter ”Flow” at Information Technology Center, Nagoya

University to assess its performance on the ARM architec-

ture, similar to the Supercomputer“Fugaku.”Addition-

ally, we plan to apply GPTune to various applications,

such as Fast Fourier Transform (e.g., FFTX, the exas-

cale successor to the FFTW open-source discrete FFT

package). Furthermore, we have explored hyperparam-

eter tuning for quantum-related technologies [7], such as

quantum annealers and quantum circuit simulators. The

c⃝ 1959 Information Processing Society of Japan 4

情報処理学会研究報告
IPSJ SIG Technical Report

adaptation and evaluation of GPTune for these purposes

constitute significant aspects of our future work.

謝辞 This work was supported by Japan Science and

Technology Agency (JST) as part of SICORP, Grant

Number JPMJSC2201.

参考文献
[1] Github - gptune/gptune.

[2] Scalapack̶scalable linear algebra package.

[3] Jeff Bilmes et al. Optimizing matrix multiply using
PHiPAC: a portable, high-performance, ansi c coding
methodology. In Proceedings of the 11th international
conference on Supercomputing, pages 340–347, 1997.

[4] Takahiro Katagiri et al. ABCLib DRSSED: A parallel
eigensolver with an auto-tuning facility. Parallel comput-
ing, 32:231–250, 2006.

[5] Takahiro Katagiri and Daisuke Takahashi. Japanese au-
totuning research: Autotuning languages and fft. In Pro-
ceedings of the IEEE, pages 2056–2067, 2018.

[6] Yang Liu et al. Gptune: multitask learning for auto-
tuning exascale applications. In Proceedings of the 26th
ACM SIGPLAN Symposium on Principles and Practice
of Parallel Programming, page 234 ‒ 246, 2021.

[7] Makoto Morishita et al. 量子コンピューティングへの自動
チューニングの適用と評価. 2023-HPC-188:22 2, 2023.

[8] R Clint Whaley et al. Automated empirical optimizations
of software and the atlas project. Parallel computing,
27:3–35, 2001.

c⃝ 1959 Information Processing Society of Japan 5

