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SVMによる誤差を含むクラス分類における 

多種疑似量子アニーラの性能評価 
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概要：近年，量子アニーリングが注目されており，その中でも疑似量子アニーラのクラウドサービスが各種展開され

ている．だが，疑似量子アニーラによるサポートベクターマシン（SVM）の評価は多くはない．そこで本報告では，
4 種類の疑似量子アニーラ（HITACHI CMOS アニーリングマシン，Fixstars Amplify Annealing Engine，NEC Vector 

Annealing サービス，Toshiba SQBM+）により，SVM による誤差を含むクラス分類を実装し，性能評価を行った．性

能評価の結果，分類精度については古典コンピュータによる SVM に近い性能が得られる場合があった．一方で，Time 

to Solution(TTS)の観点の評価では，疑似量子アニーラによって大きな差が見られた．また，本実験のデータセットに
限っては，古典が良い性能を示した． 
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1. はじめに   

近年，量子コンピュータが注目されている．量子コンピ

ュータは従来のコンピュータと異なる原理に基づいて動作

し，特定の問題において従来のコンピュータの性能を上回

ると期待されている．そのため，古典コンピュータとの性

能評価の提示が強く求められている． 

量子コンピュータの一種である量子アニーリングマシ

ンは，アニーリングの原理を活用することで組合せ最適化

問題の効率的な求解に活用できる．だが，量子アニーリン

グマシンの計算に使用する量子ビットは大量に用意するの

が難しく，そのため大規模計算が困難となる．また，安定

動作のためには一般的には-273度程の低温環境が必要であ

る．そのため，大規模な冷却装置が必要となるため，容易

な設置を妨げる原因の 1 つとなっている． 

このような背景の中，量子アニーリングマシンの動作を

従来の古典的なコンピュータで模倣する，疑似量子アニー

ラが開発されている．疑似量子アニーラは，古典コンピュ

ータの活用により，大規模計算や常温での動作を可能とし

ている．また，古典コンピュータで用いる半導体技術を活

用できるため多くの利点がある．現在，疑似量子アニーラ

を提供するクラウドサービスが複数展開されている． 

一方，量子アニーラで対象となる応用問題を考えると，

現在ニーズが高まっている機械学習関連の処理に対して，

量子や疑似量子アニーラを活用して高精度な解を高速に求

める要求が高まっていると言える．この機械学習アルゴリ

ズムの主要なアルゴリズムの一つに，サポートベクターマ

シン（SVM）[1]がある．SVM は広くクラス分類に使われて

いる汎用的な機械学習の手法である．それにもかかわらず，

 
 1 名古屋大学 大学院情報学研究科   

   Graduate School of Informatics, Nagoya University.   

 2 名古屋大学 情報基盤センター   

   Information Technology Center, Nagoya University.   

量子と疑似量子アニーラを利用した SVM を活用した詳細

な性能評価はあまりないといえる． 

そこで本研究では，疑似量子アニーラのクラウドサービ

スを活用し，国内で主流となる複数の疑似量子アニーラの

評価を目的とする．本研究で対象とする疑似量子アニーラ

は，HITACHI CMOS アニーリングマシン [2]，Fixstars 

Amplify Annealing Engine（Fixstars Amplify AE）[3]，NEC 

Vector Annealing サービス（NEC VA）[4]，Toshiba SQBM+[5]

の 4 種類の疑似量子アニーラである．これらの疑似量子ア

ニーラを用いて，SVM による誤差を含むクラス分類の問題

を実装して，分類精度の評価を行う．また，組合せ問題の

性能評価として用いられる Time to Solution (TTS)を評価基

準に採用し，分類精度と求解速度の観点での性能評価を行

う． 

本報告の構成は，以下のとおりである．2 節で SVM の概

要を，線形分離可能な問題と，線形分離不可能な問題から

説明する．3 節では，今回使用する疑似量子アニーラの説

明をする．4 節では，性能評価の詳細を示す．5 節で関連研

究についてまとめる．最後に本報告のまとめを行う． 

 

2. サポートベクターマシン（SVM）の概要 

SVM とは，最も近い点までの距離が遠くなるように決定

境界を決める分類手法である．アルゴリズム概要について，

文献[6]をもとに，線形分離可能な場合と不可能な場合に分

けて説明する． 

 

2.1 SVM のアルゴリズム(線形分離可能) 

N次元空間上の集合を N-1次元の超平面で分離できること
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を線形可能と定義する[6]． 

超平面の方程式は 

 

𝑊𝑇𝑋 + 𝑏 = 0            …(1) 

 

と表せる．𝑋 ∈ ℝn，𝑊 ∈ ℝn，𝑏 ∈ ℝである． 

 𝑖番目のデータ𝑋𝑖がクラス 1 に属するとき 1，クラス 2 に

属するとき-1 を返す𝑡𝑖 ∈ ℝを導入すると，条件式は 

 

𝑡𝑖(𝑊𝑇𝑋𝑖 + 𝑏) > 0  (𝑖 = 1, 2, 3, … , 𝑁)     …(2) 

 

となる． 

N 次元空間上の 1 点と超平面との距離𝑑は 

 

𝑑 =
|𝑤1𝑥1+𝑤2𝑥2+⋯+𝑤𝑛𝑥𝑛+𝑏|

√𝑤1
2+𝑤2

2+⋯+𝑤𝑛
2

=
|𝑊𝑇𝑋𝑖+𝑏|

‖𝑊‖
           …(3) 

 

なので，式(1)-式(3)から，マージン M を最大化するという

条件は 

𝑚𝑎𝑥𝑤，𝑏  𝑀
𝑡𝑖(𝑊𝑇𝑋𝑖+𝑏)

‖𝑊‖
≥ 𝑀  (𝑖 = 1,2, 3, … , 𝑁)      …(4) 

と表せる．また，‖𝑊‖ =
1

𝑀
 となるように標準化すると 

𝑚𝑎𝑥𝑤，𝑏

1

‖𝑊‖
，𝑡𝑖(𝑊𝑇𝑋𝑖 + 𝑏) ≥ 1  

(𝑖 = 1, 2, 3, … , 𝑁)    …(5) 

となる．計算量を減らすため以下のように変形する． 

𝑚𝑖𝑛
𝑤，𝑏

1

2
‖𝑊‖2，𝑡𝑖(𝑊𝑇𝑋𝑖 + 𝑏) − 1 ≥ 0  

(𝑖 = 1, 2, 3, … , 𝑁)  …(6) 

 

以上が線形分離可能な問題を SVM で解く際の大まかな

方法である． 

 

2.2 SVM のアルゴリズム(線形分離不可能) 

線形分離ができない場合のアプローチは大きく「誤分類

を許容する」と「高次元の座標に変換する」の 2 種類があ

る[6]．基本的にはこの両方を活用する． 

 

2.2.1 誤分類を許容する 

 ここで制約条件を，式(7)とする． 

 

𝑚𝑖𝑛
𝑤，𝑏

1

2
‖𝑊‖2， 

𝑡𝑖(𝑊𝑇𝑋𝑖 + 𝑏) − 1 ≥ 0 (𝑖 = 1, 2, 3, … , 𝑁)   …(7) 

 

線形分離不可能な場合，式(7)の制約条件を満たせず，学習

できなくなる．そのため，式(8)で表すスラック変数𝜀𝑖を導

入することを考える．このとき， 

 

𝜀𝑖 = max {0，1 − 𝑡𝑖(𝑊𝑇𝑋𝑖 + 𝑏)}    …(8) 

 

となる．スラック変数𝜀𝑖を制約条件に加え，ある程度の誤

分類を許容するようにする．そうすると， 

 

𝑡𝑖(𝑊𝑇𝑋𝑖 + 𝑏) − 1 + 𝜀𝑖 ≥ 0  (𝑖 = 1, 2, 3, … , 𝑁) …(9) 

 

と変形できる． 

ここで，スラック変数𝜀𝑖は，以下の 3 つの性質を持つ． 

1. 0 ≤ 𝜀𝑖 ≤ 1のときマージン範囲内である． 

2. 1 < 𝜀𝑖のとき誤分類が発生する． 

3. 𝜀𝑖が大きくなればなるほど誤分類の度合いが大き

い． 

 

以上より 

𝑚𝑖𝑛
𝑤，𝑏

1

2
‖𝑊‖2，𝑡𝑖(𝑊𝑇𝑋𝑖 + 𝑏) − 1 ≥ 0  

(𝑖 = 1, 2, 3, … , 𝑁) …(10) 

 

を，誤分類を許容する関数に変換すると， 

𝑚𝑖𝑛𝑤，𝑏

1

2
‖𝑊‖2 + 𝐶 ∑ 𝜀𝑖

𝑛

𝑖=1

， 

𝑡𝑖(𝑊𝑇𝑋𝑖 + 𝑏) − 1 + 𝜀𝑖 ≥ 0 (𝑖 = 1, 2, 3, … , 𝑁) …(11) 

 

となる． 

このとき，係数𝐶が大きいほど誤分類の最小化関数に対

する影響が大きくなる．そのため，𝐶が大きいことは過学習

寄りになっていることを示す．一方，𝐶が小さいことは未学

習であり，汎化寄りになっていることを示す． 

 

2.2.3 高次元の座標に変換する 

線形分離不可能な問題を，写像𝜑により線形分離可能な

高次元の座標に変換した後，逆変換することで解を求める

が，射影した後の内積計算のコストが大きいので写像𝜑は

直接定義しない． 

本研究では 

𝐾(𝑋𝑖，𝑋𝑗) = exp (−
‖𝑋𝑖 − 𝑋𝑗‖

2

2𝜎2
) = 

exp (−𝛾‖𝑋𝑖 − 𝑋𝑗‖
2

) …(12) 

 

で定義される RBF カーネル[7]を使用した．ここで式(12)の

𝛾は，「1 点の学習データが識別面に影響を与える範囲」を

表すパラメータである．𝛾が大きくなるほど 1 点の影響範

囲が小さい＝曲率が大きな識別面となる． 
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3. 疑似量子アニーラ 

 疑似量子アニーラとは，量子アニーリングマシンの動作

を従来の古典的なコンピュータで模倣するものである．疑

似量子アニーラは，組合せ最適化問題の求解に使用できる． 

疑似量子アニーラは，量子アニーラとは異なり，量子性

を活用していない．しかし，常温での動作が可能，大規模

計算に適用が可能など，多くの利点を持っている．そのた

め実用化が進んでおり，疑似量子アニーラを提供するクラ

ウドサービスが複数展開されている[2][3][4][5]． 

 表 1 は，本研究で使用した疑似量子アニーラと，先行

研究[8]に用いられた量子アニーラである D-Wave 2000Q の

スペックのまとめである．また，本研究では，Fixstars 

Amplify SDK[9]という，Fixstars 社が提供するイジングマシ

ン向けソフトウェア開発キットを利用して，各疑似量子ア

ニーラを使用している． 

 

表 1 各アニーラのスペックのまとめ 

装置名 装置形式 最大 

ビット数 

全結合 

換算 

ビット数 

結合 

グラフ 

D-Wave 

2000Q 

量子回路 2,048 64 キメラ

グラフ 

CMOS 

(GPU 版, 

float) 

GPU 262,144 512 キング

グラフ 

Amplify 

AE 

GPU 262,144 131,072 全結合

グラフ 

NEC VA Vector 

Engine[10] 

300,000 300,000 全結合

グラフ 

SQBM+ GPU 10,000,000 10,000,000 全結合

グラフ 

 

 表 1 から，D-Wave 2000Q は量子回路を使用しており量

子性を持つが，それ以外の疑似量子アニーラは GPU 

(Graphics Processing Unit)などの古典ハードウェア使用して

いるため量子特性を活用していない． 

なお，Fixstars Amplify SDK を通じて使用可能な CMOS ア

ニーリングマシンには，GPU 版 32bit（int），GPU 版 32bit

（float），ASIC 版 4bit がある[11]．本研究では，GPU 版 32bit

（float）を使用している． 

また，CMOS アニーリングマシンの全結合換算ビット数

が 512 で，本研究で使用した疑似量子アニーラの中で一番

小さいことが分かる．後述する，疑似量子アニーラにおけ

る SVM のハイパーパラメータ K を，今回 2 または 3 とし

ている．K は，各点を表現するために使用する量子ビット

の数であるため，K=3 のとき，CMOS アニーラで扱うこと

の出来る訓練データの数は，170 が限界となる． 

今回，訓練データの数を 100 とした．この理由は，この

CMOS アニーリングマシンにおけるハードウェア制約に基

づいて決定されている点に注意する． 

 

4. 性能評価 

4.1 問題設定 

本性能評価では以下の図 1，2 のように 2 次元平面上に

乱数を生成し，2 種類の関数を基準に 2 クラスにラベル付

けを行うことで，線形分離可能な問題と線形分離不可能な

問題を設定して実験を行った． 

図 1，2 の境界面の各関数はそれぞれ，y =x，および (x-

50)2+(y-50)2=1600 と設定した．その際，0%から 20%の 1%

刻みの割合で誤ラベルを混入させて，検証用データを作成

した． 

 

 

図 1 線形分離可能な問題 

 

図 2 線形分離不可能な問題 
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ここで誤ラベルを 10%混入させたデータは，図 3，4 の

ようになる． 

計 1600 個の乱数を生成し，ホールドアウト法に基づき，

100 個を訓練データ（図 5，6），1000 個を検証データ（図

7，8），500 個をテストデータ（図 9，10）としてクラス分

類を行う． 

また，SVM のハイパーパラメータの設定については，先

行研究[12]を参考に，グリッドサーチによるハイパーパラ

メータチューニングを行い，その上で，4.2 節で説明する範

囲においてチューニングを行う． 

今回，データの作成および誤差の混入は，Python プログ

ラムを用いてランダムに行った．そのため，特定の誤ラベ

ル混入率において，極端に分類精度が低くなったり高くな

ったりする可能性がある．このような偏りを軽減するため，

各誤ラベル混入率ごとに 5 セットのデータを作成し，その

平均をとった． 

 

図 3 線形分離可能な問題（10%の誤ラベル） 

 

図 4 線形分離不可能な問題（10%の誤ラベル） 

 

図 5 線形分離可能な問題の訓練データ 

 

図 6 線形分離不可能な問題の訓練データ 

 

図 7 線形分離可能な問題の検証データ 
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図 8 線形分離不可能な問題の検証データ 

 

図 9 線形分離可能な問題のテストデータ 

 

図 10 線形分離不可能な問題のテストデータ 

4.2 性能評価の手順 

 本評価では，疑似量子アニーラで利用するハミルトニア

ンについて，文献[8]を参考に，以下のハミルトニアンを用

いる． 

𝐸 =  
1

2
∑ 𝑎𝐾𝑛+𝑘

𝑎𝐾𝑚+𝑗
𝐵𝑘+𝑗𝑡𝑛𝑡𝑚𝑘(𝑥𝑛 , 𝑥𝑚)𝑛,𝑚,𝑘,𝑗 −

∑ 𝐵𝑘
𝑛,𝑘 𝑎𝐾𝑛+𝑘

+
1

2
𝜉(∑ 𝐵𝑘𝑎𝐾𝑛+𝑘

𝑡𝑛)𝑛,𝑘
2

                        …(14) 

 式(14)では，𝐵, 𝐾, 𝛾, 𝜉の4つのパラメータが出現しており，

それらを疑似量子アニーラによる SVM のハイパーパラメ

ータとしている．ここで，𝐵は符号化の基底，𝐾は符号化の

ためのバイナリ変数の数，𝛾は RBF カーネル関数中の係数，

𝜉はエネルギー関数中の第二制約の係数である． 

 𝐵, 𝐾, 𝛾, 𝜉の設定値は，文献[12]を参考に，表 2 の数値を使

用し，グリッドサーチによるハイパーパラメータチューニ

ングを行った． 

 

表 2 疑似量子アニーラによる SVM の 

ハイパーパラメータ設定範囲 

パラメータ 設定範囲 

𝐵 2,10 

𝐾 2,3 

𝛾 0.0001,0.001,0.01,0.1,1,10,100,1000 

𝜉 0,10,100 

  

また，古典コンピュータによる SVM のハイパーパラメ

ータとその探索範囲は，表 3 のようにした．このように設

定したのは，疑似量子アニーラによる SVM と古典コンピ

ュータによる SVM のハイパーパラメータ探索点の数（ト

ライアル数）を等しくするためである（2×2×8×3 = 16×

6 = 96）． 

 

表 3 古典コンピュータによる SVM の 

ハイパーパラメータ設定範囲 

パラメータ 設定範囲 

𝐶 
0.0001,0.0005,0.001,0.005, 

0.01,0.05,0.1,0.5,1,5,10,50, 

100,500,1000,5000 

𝛾 0.0001,0.0005,0.001,0.005,0.01,0.05 

 

具体的な性能評価の手順は，以下の通りである． 

 

① グリッドサーチにより，訓練データから SVM 分類器

を作成する．その際，各アニーラの実行時間を測定

する． 

② 作成した分類器を検証データに適用し，分類精度と

TTS を算出する． 



情報処理学会研究報告 

IPSJ SIG Technical Report 

 

 

ⓒ2025 Information Processing Society of Japan 6 
 

③ ②における分類精度，TTS における上位 10 個の分類

器を，テストデータに適用し，分類精度と TTS を算

出する． 

 

古典コンピュータおよび各 4 種の疑似量子アニーラにつ

いて，以上の①～③の手順により，線形分離可能，線形分

離不可能な問題のそれぞれに対して Time to Solution（TTS）

の上位 10 平均と，分類精度の上位 10 平均に基づき性能評

価を行った．分類精度は，表 4 に示す混同行列に基づいた

計算式(15)のように，TTS は式(16)のように定義した． 

 

表 4 混同行列 

 予測 Positive 予測 Negative 

正解 Positive TP (True Positive) FN (False Negative) 

正解Negative FP (False Positive) TN (True Negative) 

 

分類精度 = 
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁
     …(15) 

TTS =
𝑙𝑜𝑔 (1−0.8)

𝑙𝑜𝑔 (1−𝑝)
𝑇  (𝑇 =実行時間, 𝑝=分類精度)    …(16) 

 

 実行環境は，Windows10，Intel Core i9-13900KF，メモリ

32GB 搭載のパソコンで Ubuntu 22.04.3 LTS (WSL2)を使用

した．Python はバージョン 3.10.12，Fixstars Amplify SDK は

バージョン 1.3.1 を使用した． 

 各疑似量子アニーラの主なクライアントパラメータ設定

は，以下の表 5-8 のようにした． 

 

表 5 CMOS アニーリングマシンの 

クライアントパラメータ 

クライアントパラメータ 設定値 

温度変化ステップ数 10 

温度ステップ当たりの長さ 100 

初期温度 100 

最終温度 0.02 

 

表 6 Fixstars Amplify AE のクライアントパラメータ 

クライアントパラメータ 設定値 

タイムアウト(ms) 1000 

 

表 7 NEC VA のクライアントパラメータ 

クライアントパラメータ 設定値 

アニーリングの sweep 数 500 

アニーリングのモード Speed 

タイムアウト(ms) 10000 

 

 

表 8 Toshiba SQBM+のクライアントパラメータ 

クライアントパラメータ 設定値 

タイムアウト(ms) 1000 

 

4.3 実験結果 

図 11 および図 12 には，線形分離可能な問題と線形分離

不可能な問題における，誤ラベル混入率と分類精度の関係

を示したグラフを示す．横軸が誤ラベル混入率，縦軸が分

類精度となる．ここでの分類精度は，各誤差に対して手順

③で得られた分類精度の平均値を算出し，それを 5 つのデ

ータセット全体で平均した値である． 

 

 

図 11 線形分離可能な問題における， 

誤ラベル混入率と分類精度 

 

 

図 12 線形分離不可能な問題における， 

誤ラベル混入率と分類精度 

 

また，図 13 および図 14 に，線形分離可能な問題と線形

分離不可能な問題における，誤ラベル混入率と TTS の関係

を示したグラフを示す．横軸が誤ラベル混入率，縦軸が TTS

となる．ここでの TTS は，各誤差に対して手順③で得られ

た TTS の平均値を算出し，それを 5 つのデータセット全体

で平均した値である．なお，疑似量子アニーラによって TTS

に大きなばらつきが見られたため，縦軸に対数スケールを

採用した． 
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図 13 線形分離可能な問題における， 

誤ラベル混入率と TTS（秒） 

 

 

 図 14 線形分離不可能な問題における， 

誤ラベル混入率と TTS（秒） 

 

また，それぞれを誤差で平均したものを，表 9，表 10 に

示す． 

 

表 9 各アニーラによる分類精度(%) 

分類精度(%) 線形分離可能 線形分離不可能 

古典 86.0 83.9 

CMOS 84.3 78.2 

Amplify AE 85.7 83.3 

NEC VA 85.6 82.4 

SQBM+ 84.3 81.1 

 

表 10 各アニーラによる TTS(秒) 

TTS(秒) 線形分離可能 線形分離不可能 

古典 0.0003 0.0004 

CMOS 0.0663 0.0808 

Amplify AE 0.7563 0.8237 

NEC VA 0.0026 0.0027 

SQBM+ 0.8853 0.9912 

図 11，12 及び表 9 から，分類精度について，古典コンピ

ュータによる SVM が最も高く，それに続いて Fixstars 

Amplify AE，NEC VA，Toshiba SQBM+，CMOS アニーリン

グマシンの順となった． 

Fixstars Amplify AE の分類精度がとても高く，線形分離

可能，不可能のどちらにおいても，古典の正解率にとても

近い値となった．  

CMOS アニーリングマシンによる分類精度は，線形分離

可能な問題については古典と 1.7 ポイント差となっている

が，線形分離不可能な問題については，5.7 ポイント差とな

り，他の疑似量子アニーラと比べても，正解率の落ちが顕

著となった． 

図 13，14 及び表 10 から，TTS について，古典コンピュ

ータによる SVM が最も小さく，それに続いて NEC VA，

CMOS アニーリングマシン，Amplify AE，Toshiba SQBM+

の順となった． 

 

4.4 考察 

Fixstars Amplify AE と NEC VA について，分類精度が他

の疑似量子アニーラに比べて高くなった．これは，これら

二つの疑似量子アニーラが，局所解からの脱出機構を持っ

ていることが原因である可能性が高い． 

今回の実験では，Fixstars Amplify AE と Toshiba SQBM+

について，クライアントパラメータのタイムアウトを

1000ms に設定している．それによって，実行時間が 1 秒前

後になっており，TTS も 1 秒前後になっていると考えられ

る． 

 

5. 関連研究 

 本報告では疑似量子アニーラを取り扱ったが，比較対象

として，量子特性を使用する量子アニーラに興味を持って

いる．量子アニーラに SVM を適用した例として，D. Willsch 

らによる研究[8]がある．研究[8]では，量子アニーラである

D-Wave 2000Q に SVM を適用しており，量子効果によりデ

ータ数が少ない時，古典コンピュータによる SVM よりも

高品質な解が出ると主張している．本研究では疑似量子ア

ニーラを用いたため，量子効果は適用されない． 

 疑似量子アニーラによる SVM の適用を行った研究[12]

では，CMOS アニーリングマシンと，Fixstars Amplify AE を

用いて，線形分離可能な問題一種類と，線形分離不可能な

問題二種類に SVM を適用している．誤ラベルについては，

混入無し，5%，10%で性能評価を行っており，これらの点

に違いがある． 

 また，研究[8]と研究[12]では評価基準に分類精度を用い

ている．そのため，TTS の観点で性能評価を行っている点

に違いがある． 
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6. おわりに 

本報告では，複数の疑似量子アニーラを用いて，SVM の

評価を行った．2 値分類問題における線形分離可能な問題

と線形分離不可能な問題の 2 種について，誤差を含む問題

に対して，分類精度と TTS の観点で性能評価を行った． 

Fixstars Amplify AE や NEC VA については，古典環境に

かなり近い分類精度が得られた．だが古典環境には及ばず，

Toshiba SQBM+と CMOS アニーリングマシンについてはよ

り分類精度が落ちる結果となった． 

また，TTS の観点で見ると，古典環境が圧倒的に良く，

次点である NEC VA と比較しても 10 倍ほどの差が出る結

果となった． 

今回，ハイパーパラメータチューニングにはグリッドサ

ーチを使用したが，ハイパーパラメータが 4 変数となる疑

似量子アニーラ環境においては，96 点のグリッドサーチで

はチューニング不足である可能性が高い．そのため，より

効率よくハイパーパラメータ探索が行えるよう，自動チュ

ーニング(AT)技術[13]などを導入し，かつベイズ最適化な

どによる AT の検討を進めたい． 

疑似量子アニーラだけでなく，D-Wave Advantage のよう

な量子アニーラを用いた SVM による誤差を含むクラス分

類の性能評価も検討したい． 

また，本報告では詳しい検証を行っていないが，Fixstars 

Amplify AE と Toshiba SQBM+について，タイムアウトを

1000ms から 100ms などに設定すると，分類精度がほぼ変

化せずに実行時間が十分の一となり，TTS が大幅に改善さ

れることが分かっている．そのため，疑似量子アニーラに

おける SVM のハイパーパラメータだけでなく，各疑似量

子アニーラのクライアントパラメータを含めた AT 手法の

提案が重要な今後の課題となる． 
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