
Sustainable HPC software:
From Auto-tuning Technology

for Performance Portability
Takahiro Katagiri

Information technology Center, Nagoya University, Japan

eScience2024, Senri Life Science Center (Osaka Senri)
WS: Sustainable Project Pathways for HPC Software and Applications, 14:00 – 17:00,
Room: MEGARON B, 17th September, 2024

Outline
1. Background: Performance Portability

and Auto-tuning
2. Case1: CMOS Annealing Machine
3. Case2: Adaptation of Software

Engineering: Optimization of Test
Sequences for LAPACK

4. Conclusion

WS: Sustainable Project Pathways for HPC
Software and Applications

2

Outline
1. Background: Performance Portability

and Auto-tuning
2. Case1: CMOS Annealing Machine
3. Case2: Adaptation of Software

Engineering: Optimization of Test
Sequences for LAPACK

4. Conclusion

WS: Sustainable Project Pathways for HPC
Software and Applications

3

What is Auto-tuning (AT)?

4

•Computer Architectures
•Computer Systems

•Programs
•Algorithms

Performance Tunable Knobs
(Performance Parameters)

Auto-tuning (AT) Facility

Adjustment Facility
•Optimization
•Parameter Search
•AI (Learning / Self-Adaption) Performance

Monitoring
Function Knob Auto-

Generation
Function

•Programs
•Algorithms

Performance Database

4

Performance Portability (PP)
 A paradigm for optimizing multiple computer

environments.
 Ensuring high performance with legacy programs across diverse

systems. -> “Performance Portability (PP)”

Computer
made of
A company

Compiler A

Application I

Computer
made of
B company

Compiler B

Application I

Computer
made of
C company

Compiler C

Application I

Auto-tuning (AT) Facility
 Original Legacy Program
 Algorithm Selection

Functions of AT Facility
 Code auto-generation
 Parameter optimization by

searching or AI
 Performance monitoring
 Performance database and

models

Several novel computer
environments are emerging as
we move toward the post-
exascale era.NVIDIA H100

Xeon MAX

AMD EPYC

Metric of PP
1. Set a test suite T* (input data and problem size, etc.)
2. Determine standard environment (System S*)
3. Measure performance S* on System S* using Test Suite T*.
4. Determine target environment (System S1)
5. Measure performance S1 on System S1 using Test Suite T*.
Performance Portability PP(System, Test Suite) is defined by:

WS: Sustainable Project Pathways for HPC
Software and Applications

ଵ ∗ ௉௘௥௙௢௥௔௡௖௘ ௌభ௉௘௥௙௢௥௠௔௡௖௘ ௌ∗
6

௜ୀଵே ௜ ∗
(Average of each PP() on system Si , i = 1, …, N) is a candidate of metrics of PP.

1. Phase of Specification

2. Phase of
Programming

!ABCLib$ install unroll (i,k) region start
!ABCLib$ name MyMatMul
!ABCLib$ varied (i,k) from 1 to 8
do i=1, n
do j=1, n
do k=1, n
C(i, j) = C(i, j) + A(i, k) * B(k, j)

enddo
enddo

enddo
!ABCLib$ install unroll (i,k) region end

do i=1, n
do j=1, n
do k=1, n
C(i, j) = C(i, j) + A(i, k) * B(k, j)

enddo
enddo

enddo

do i=1, n, 2
do j=1, n
do k=1, n
C(i, j) = C(i, j) + A(i, k) * B(k, j)
C(i+1, j) = C(i+1, j) + A(i+1, k) * B(k, j)

enddo
enddo

enddo

do i=1, n, 2
do j=1, n

Ctmp1 = C(i, j)
Ctmp2 = C(i+1, j)
do k=1, n

Btmp = B(k, j)
Ctmp1 = Ctmp1 + A(i, k) * Btmp
Ctmp2 = Ctmp2 + A(i+1, k) * Btmp

enddo
C(i, j) = Ctmp1
C(i+1, j) = Ctmp2

enddo
enddo

do i=1, n, 2
do j=1, n
Ctmp1 = C(i, j)
Ctmp2 = C(i+1, j)
do k=1, n, 2

Btmp1 = B(k, j)
Btmp2 = B(k+1, j)
Ctmp1 = Ctmp1 + A(i, k) * Btmp1

+ A(i, k+1) * Btmp2
Ctmp2 = Ctmp2 + A(i+1, k) * Btmp1

+ A(i+1, k+1) * Btmp2
enddo
C(i, j)=Ctmp1
C(i+1, j)=Ctmp2

enddo
enddo

3. Phase of Optimization

Code
Generation

4. Phase of
Knowledge of

Discovery
for Tuning

Analyzing Performance

Multiple
Target Computers

Compile and Run
Programming

Models,
Code

Optimizations,
Resource

Allocations,
etc.

Database and
Performance
Model for
Tuning Knowledge 7

Development Flow of HPC Software

Cost of HPC Software Development
1. Set a test suite (input data and problem size, etc.)
2. Set a target performance (with respect to Performance Portability)
3. Make specification
4. Programming
5. Performance tuning (Performance profiling and analysing, Modification of

codes, and Tuning performance parameters, etc.)
6. Summarize tuning experience and make a performance model
7. Check the target performance
8. If current performance is not established for the target performance, back to 3.

WS: Sustainable Project Pathways for HPC
Software and Applications

is the aim by adapting AT technology, but
current AT focuses on process 5 as usual.

8

ppOpen-AT System (Based on FIBER)

ppOpen-APPL /*

ppOpen-AT
Directives

User
KnowledgeLibrary

Developer

① Before
Release-time

Candidate
1

Candidate
2

Candidate
3

Candidate
nppOpen-AT

Auto-Tuner

ppOpen-APPL / *

Automatic
Code
Generation②

:Target
Computers

Execution Time④

Library User

③

Library Call

Selection

⑤

⑥

Auto-tuned
Kernel
Execution

Run-
time

9

A Scenario of AT by ppOpen-AT for
code optimization of a kernel of a simulation

Execution with optimized
kernels without AT process.

Library User

Call AT function,
and execute the library

Execute auto-tuner:
With fixed loop lengths
(by specifying problem size and number of
MPI processes)
Time measurement for target kernels
Store the best variant information.

Load the optimized AT
parameters, and execute the

library

Store the fastest kernel
information

Using the fastest kernel without AT
(except for varying problem size, number
of MPI processes and OpenMP threads.)

Specify problem size,
number of MPI processes
and OpenMP threads, etc.

10

Product Run

An example:ppOpen-AT Directives
: Loop Split & Collapse with data-flow dependence

11

!oat$ install LoopFusionSplit region start
!$omp parallel do private(k,j,i,STMP1,STMP2,STMP3,STMP4,RL,RM,RM2,RMAXY,RMAXZ,RMAYZ,RLTHETA,QG)

DO K = 1, NZ
DO J = 1, NY
DO I = 1, NX

RL = LAM (I,J,K); RM = RIG (I,J,K); RM2 = RM + RM
RLTHETA = (DXVX(I,J,K)+DYVY(I,J,K)+DZVZ(I,J,K))*RL

!oat$ SplitPointCopyDef region start
QG = ABSX(I)*ABSY(J)*ABSZ(K)*Q(I,J,K)

!oat$ SplitPointCopyDef region end
SXX (I,J,K) = (SXX (I,J,K) + (RLTHETA + RM2*DXVX(I,J,K))*DT)*QG
SYY (I,J,K) = (SYY (I,J,K) + (RLTHETA + RM2*DYVY(I,J,K))*DT)*QG
SZZ (I,J,K) = (SZZ (I,J,K) + (RLTHETA + RM2*DZVZ(I,J,K))*DT)*QG

!oat$ SplitPoint (K, J, I)
STMP1 = 1.0/RIG(I,J,K); STMP2 = 1.0/RIG(I+1,J,K); STMP4 = 1.0/RIG(I,J,K+1)
STMP3 = STMP1 + STMP2
RMAXY = 4.0/(STMP3 + 1.0/RIG(I,J+1,K) + 1.0/RIG(I+1,J+1,K))
RMAXZ = 4.0/(STMP3 + STMP4 + 1.0/RIG(I+1,J,K+1))
RMAYZ = 4.0/(STMP3 + STMP4 + 1.0/RIG(I,J+1,K+1))

!oat$ SplitPointCopyInsert
SXY (I,J,K) = (SXY (I,J,K) + (RMAXY*(DXVY(I,J,K)+DYVX(I,J,K)))*DT)*QG
SXZ (I,J,K) = (SXZ (I,J,K) + (RMAXZ*(DXVZ(I,J,K)+DZVX(I,J,K)))*DT)*QG
SYZ (I,J,K) = (SYZ (I,J,K) + (RMAYZ*(DYVZ(I,J,K)+DZVY(I,J,K)))*DT)*QG

END DO; END DO; END DO
!$omp end parallel do
!oat$ install LoopFusionSplit region end

Re-calculation is defined.

Using the re-calculation
is defined.

Loop Split Point

Specify Loop Split and Loop Fusion

WS: Sustainable Project Pathways for HPC
Software and Applications

2.07
1.08 1.48 1.30

5.58
4.65 5.10

0

2

4

6

P8T240 P16T120 P32T60 P64T30 P128T15 P240T8 P480T4

Speedups

AT Effect (A Kernel for simulator of
seismic wave analysis)

113.41
41.05 47.26 42.21

218.49 217.49
231.38

54.81 38.12 32.02 32.40 39.16 46.76 45.37

0
50

100
150
200
250

P8T240 P16T120 P32T60 P64T30 P128T15 P240T8 P480T4

Without AT With AT[Seconds]

Best SW:6 Best SW:5 Best SW:5 Best SW:4 Best SW:6 Best SW:5 Best SW:6

5.6x
Xeon Phi (KNC)
Cluster (8 Nodes)
PX: X MPI Procs.
TY: Y OMP Threads

T. Katagiri, S. Ohshima, M. Matsumoto:
"Directive-based Auto-tuning for the Finite
Difference Method on the Xeon Phi“, Proc.
of IPDPSW2015, pp.1221-1230 (2015)

12

Outline
1. Background: Performance Portability

and Auto-tuning
2. Case1: CMOS Annealing Machine
3. Case2: Adaptation of Software

Engineering: Optimization of Test
Sequences for LAPACK

4. Conclusion

WS: Sustainable Project Pathways for HPC
Software and Applications

13

Case1:
CMOS Annealing Machine

Collaborator: Mr. Makoto Morishita
(D3, Nagoya University)

14

Background
 Experiments are being conducted to confirm quantum supremacy by

Google and the University of Science and Technology of China, and
quantum computers are attracting attention[1].

 Quantum-inspired computers are being developed in Japan to follow
quantum computers.
 Example of quantum-inspired computers:

1. CMOS Annealing Machine（Hitachi）[2]

2. Digital Annealer（Fujitsu）
3. Simulated Bifurcation Machine（Toshiba）

 Development of quantum circuit simulators utilizing GPUs is also
gaining momentum.
 Cirq, Qiskit, cuQuantum, etc.

WS: Sustainable Project Pathways for HPC
Software and Applications

[1] ”Hello quantum world! Google publishes landmark quantum supremacy claim”，Nature, 23 October 2019
[2] Masanao Yamaoka, et al. "20k-spin Ising chip for combinational optimization problem with

CMOS annealing", ISSCC, 2015

15

CMOS Annealing Machine (1/2)
 Positioning of Quantum-inspired machines

 What is CMOS Annealing Machine?
 Developed by Hitachi, Ltd. in 2015
 A specialized computer that performs ground state search for the Ising model
 Providing cloud services Annealing Cloud Web[3] (GPU version, 32bits, Float)

to expand the number of users

WS: Sustainable Project Pathways for HPC
Software and Applications

[3] https://annealing-cloud.com/ja/index.html

Quantum
computers

Quantum-inspired
machine

Gate-base Annealing-base

• IBM Quantum
• System One

• D-Wave 2000Q
• D-Wave Advantage

Annealing-base

• CMOS Annealing Machine
• Digital Annealer
• Simulated Bifurcation Machine

Cooling system is required, low number of qubits Operates at room temperature, relatively large number of qubits

“A business-card size”
CMOS annular (ASIC, 4 bits）

16

CMOS Annealing Machine (2/3)
 Specification of current annealing machines

WS: Sustainable Project Pathways for HPC
Software and Applications

Simulated
Bifurcation
Machine

Digital Annealer
CMOS Annealing Machine

D-Wave 2000Q
GPU versionASIC version

GPUDigital circuitGPUDigital
circuitQPUHardware

10,0008,192262,14461,9522,048Qubits

Complete graphComplete graphKing’s graph
(Only ASIC)

*GPU version is
fully connected.

Chimera graph

Graph

17

CMOS Annealing Machine（2/2）
 Solving procedure using CMOS annealing machine

WS: Sustainable Project Pathways for HPC
Software and Applications

18

Tunable Parameters
on Quantum-Inspired Annealers

WS: Sustainable Project Pathways for HPC
Software and Applications

19

Auto-tuning Framework for Hyper-
parameters (Annealing-base)

WS: Sustainable Project Pathways for HPC
Software and Applications

Parameters to be tuned when solving
problems with CMOS annealing machines

OverviewParameters
Coefficient of constraint termWa
Coefficient of cost termWb
Strength of chainchain_strength
Number of steps in annealingtemperature_num_steps
Length of steps in annealingtemperature_step_length
Initial temperature in annealingtemperature_initial
Final temperature in annealingtemperature_target

QUBO formula

𝐻 ൌ 𝑤௔ ෍ ሺ1 െ 𝑥௨ሻሺ1 െ 𝑥௩ሻሺ௨,௩ሻ∈ா ൅ 𝑤௕ ෍ 𝑥௩௩∈௏ᇱ
constraint cost

20

Experiment Settings（1/3）
 Minimum Vertex Cover
 Find V′, which is the vertex covering set (where 𝑉′ is the

minimum, Graph 𝐺 ൌ ሺ𝑉,𝐸ሻ, V′ ⊆ 𝑉)

WS: Sustainable Project Pathways for HPC
Software and Applications

Example： 𝑉 ൌ 5

※Vertex set 𝑉′ ⊆ 𝑉is the vertex covering of 𝐺 ൌ 𝑉,𝐸 :
“For all edge 𝑒 ∈ 𝐸, at least one of the endpoints is included in 𝑉ᇱ ”

𝑽′ ൌ 𝟐 (Minimum) 𝑉′ ൌ 3 (Not minimum)

22

Experiment Settings（2/3）
 Artificial Problem:

Minimum Vertex Cover in Square Lattice Graphs

WS: Sustainable Project Pathways for HPC
Software and Applications

Theoretical Optimum Answer

23

Experiment Settings（3/3）
 Minimum Vertex Cover (QUBO formula)

 Energy function (QUBO variable 𝑥 ∈ ሼ0,1ሽሻ[5]

WS: Sustainable Project Pathways for HPC
Software and Applications

[5] https://amplify.fixstars.com/ja/techresources/research/ising-model-formulation/vertex-covering/

𝐻 ൌ 𝑤௔ ෍ ሺ1 െ 𝑥௨ሻሺ1 െ 𝑥௩ሻሺ௨,௩ሻ∈ா ൅ 𝑤௕ ෍ 𝑥௩௩∈௏ᇱ
 Implementation
with Amplify

constraint cost

Amplify
Developed by Fixstars Corp.
The Python library for Ising
machine

24

Hardware Environment

WS: Sustainable Project Pathways for HPC
Software and Applications

DetailsHardware /
Software

• Annealing Cloud Web API v2:
GPU version 32bit (float)

CMOS Annealing
Machine

• Machine for executing Python (Version 3.8.2)
• 1.6GHz Dual Core Intel Core i5
• Memory 8GB

MacBookAir
(macOS Big Sur)

• Library for using CMOS annealing machine via
Web API

• Version 0.5.13
Amplify

Table 4. Experiment environment (annealing-base)

Mac
Book

25

Result: Annealing-base

WS: Sustainable Project Pathways for HPC
Software and Applications

Comparison of problem sizes 𝑁=7 and 𝑁=8

௔ ௕
chain_strength

Optimal
Answer
Rate [%]

Fail to Find Fail to Find Fail to Find Fail to Find

Fail to Find

Weight [0:2] Weight [0:2] Weight [0:2]

26

Auto-tuning Effect by Optuna[3]

WS: Sustainable Project Pathways for HPC
Software and Applications

Optimal
solution ratio

𝑐ℎ𝑎𝑖𝑛_𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ𝑤௕𝑤௔ 6.420.019.76𝑁 ൌ 3 1.270.0076.26𝑁 ൌ 5

Optimal
solution ratio

𝑐ℎ𝑎𝑖𝑛_𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ𝑤௕𝑤௔ 𝟓%1.001.001.00𝑁 ൌ 3 𝟏𝟑%1.001.001.00𝑁 ൌ 5
The optimal solution ratio [%] with default values

Table 8. The optimal solution ratio [%] with auto-tuned settings

Auto-tuned Settings

Default Settings

Hundreds of
trials are

automated!

[3] Preferred Networks, Inc. : An open source hyperparameter optimization
framework to automate hyperparameter search. https://optuna.org/

28

Outline
1. Background: Performance Portability

and Auto-tuning
2. Case1: CMOS Annealing Machine
3. Case2: Adaptation of Software

Engineering: Optimization of Test
Sequences for LAPACK

4. Conclusion
WS: Sustainable Project Pathways for HPC

Software and Applications 29

Case2: Adaptation of Software
Engineering: Optimization of

Test Sequences for LAPACK
Collaborators: Prof. Shuji Morisaki (Nagoya University)

Mr. Hiroto Kashimura (M1, Nagoya University)

30

 Many existing methods have assumptions about testing
software and systems.
1. Targets of the Test
 It is assumed that the test is to verify a specific part of the

source code or a specific function.
 Prioritize by selecting tests that have the greatest coverage of

your code.
2. Timing of the Test
 The test is set to be shorten the test execution time. In

addition, the test assumes that the test will be executed
every time the code is changed.

Conventional Method for Priority Problem of
Software Testing

We have almost no experience of numerical
library for the software testing. 31

STCollection [4]
STCollection: A test program of LAPACK routines

for symmetric tridiagonal eigensolvers.
Verifying calculated results with analytical

answers for eigenvalue problems.
Setting multiple tests with respect to difficulties

of eigenvalue problem.
Different distributions for theoretical eigenvalues

are utilized to check the “computational” bug.
[4] Osni Marques︓GitHub - oamarques/STCollection: Collection of
symmetric tridiagonal and bidiagonal matrices，GitHub，
〈https://github.com/oamarques/STCollection〉

WS: Sustainable Project Pathways for HPC
Software and Applications

32

Test Set: test_easy
in STCollection
 The default test order is as follows:

 Case1-4:Eigenvalue distribution is followed by
Type 3 and 4.

 Case5-10: (1, 2, 1)-matrix.
 Case11-16: Wilkinson matrix
 Case17: Glued matrix

 𝑇ଵ : Eigenvalue distribution is followed by
Type 1.

 𝑇ଶ : (1, 2, 1)-matrix
 𝑇ଷ : Eigenvalue distribution is followed by

Type 3.
 Glue coefficients are:𝛾ଵ ൌ 0.001, 𝛾ଶ ൌ 0.002

 Case18: Same as Case 17, but glue coefficients
are 𝛾ଵ ൌ െ0.001, 𝛾ଶ ൌ െ0.002

 Case19-20: Read a user specified file

Test MatricesType 𝜆ଵ ൌ 1, 𝜆ଵ ൌ 1𝑘 , 𝑖 ൌ 2, 3, …𝑛1

𝜆௜ ൌ 1 , 𝑖 ൌ 1, 2, …𝑛 െ 1, 𝜆௡ ൌ 1𝑘2

𝜆௜ ൌ 𝑘ିሺ௜ିଵ௡ିଵሻ , 𝑖 ൌ 1, 2, …𝑛3

𝜆௜ ൌ 1 െ 𝑖 െ 1𝑛 െ 1 1 െ 1𝑘 , 𝑖 ൌ 1, 2, …𝑛4

n randomized eigenvalues within ଵ௞ , 1 .The distribution is uniform.
5

N randomized eigenvalues by user
specified range.

6 𝜆௜ ൌ 𝑢𝑙𝑝 ൈ 𝑖, 𝑖 ൌ 1, 2, …𝑛 െ 1, 𝜆௡ ൌ 17 𝜆ଵ ൌ 𝑢𝑙𝑝, 𝜆௜ ൌ 1 ൅ 𝑢𝑙𝑝 ൈ 𝑖, 𝑖 ൌ 2, 3, …𝑛 െ 1, 𝜆௡ ൌ 28

𝜆ଵ ൌ 1, 𝜆௜ ൌ 𝜆௜ିଵ ൅ 100 ൈ 𝑢𝑙𝑝, 𝑖 ൌ 2, 3, …𝑛9

Case3

Case2

Case1

Case20

…

Test Order

WS: Sustainable Project Pathways for HPC
Software and Applications

33

Experimental Environment

HPE ProLiant DL 560Machine Type
Intel Xeon Gold 6230 × 4CPUNode

DDR4 384 GiB (Memory
bandwidth: 563.136 GB/s)

Main Memory

100Maximum number of Nodes
537.6 TFLOPSTotal Theoretical FLOPS

37.5 TiBTotal Memory Amount

Supercomputer “Flow” Cloud Sub-System at
Information Technology Center, Nagoya University

Source: Supercomputer “Flow”,
https://icts.nagoya-u.ac.jp/ja/sc/overview.html

WS: Sustainable Project Pathways for HPC
Software and Applications

34

Experimental Setting
We implemented intentionally injected “Bug” in

BLAS routine (dgemm).
→A Frequently called routine in LAPACK.
A scalar value of “alpha” in the dgemm routine is

forced to change from 1.0 to 0.01.
→Artificial Bug situation in the dgemm routine.

35

Case3

Case2

Case1

Case20

…

Default Test Order

Preliminary Result

OrthogonalityResidualExecution Time
[Sec.]

alpha 1.80 ൈ 10ିଶ3.34 ൈ 10ିଷ9.12 ൈ 10ଵ1.0
(normal) 4.84 ൈ 10ଵଵ2.42 ൈ 10ଵଵ1.270.01

 The bug is only found in the Case 17 in view point of residual and
orthogonality in the test routine of STCollection.

Test Results in Case 17

It has a potential that execution time of the
testing can be reduced if the order of Case 17 is

set to the first test sequence.

Case17

Case2

Case1

Case20

…

Test Re-Order
Test Time Speed-up: 9.17x

36
al

ph
a

Case No.

Re
sid

ua
lBuggy

Test order optimization by ppOpen-AT
Install-Time

Set target routines and
problem size by end-user

Execute auto-tuner:
Obtain error-threshold for all routines
Time measurement for each routine
Store the best order information

Set test configuration and
execute the test

Store the test order
information

Using the best test order
without AT

Specify target environment
(CPU, Compiler, number of

Threads and MPI Processes, etc.)

Re-use the order
in next test

Re-use the order
in next test

37

Extension of ppOpen-AT Directives
: Order optimization for select directive

38

!oat$ install select region start
!oat$ according min ($time) condition (err > th)
!oat$ according opt (order)

!oat$ select sub region start
call TestCase1()

!oat$ select sub region end
!oat$ select sub region start

call TestCase2()
!oat$ select sub region end

…
!oat$ select sub region start

call TestCaseN()
!oat$ select sub region end

!oat$ install select region end

Conventional directive:
Select the best region for
the following sub regions.

Conventional directive:
Specify optimization condition.
 Minimalize execution time.
 Over a threshold value to mesured error.

Extended directive:
Order optimization for the following
sub regions.

In code of the test routine:

Outline
1. Background: Performance Portability

and Auto-tuning
2. Case1: CMOS Annealing Machine
3. Case2: Adaptation of Software

Engineering: Optimization of Test
Sequences for LAPACK

4. Conclusion

WS: Sustainable Project Pathways for HPC Software
and Applications

39

Conclusion
 Auto-tuning (AT) technology has a potential to increase

HPC software productivity.
 Sustainability
 Using directives for AT to conventional programing languages,

Fortran, C, etc., keeps sustainability in performance.
 Testing (Tuning) is automated by the AT framework.
 Tuning costs can be reduced, such as computational efficiency,

energy, etc.
 But still remain as traditional problems…
 Maintainability, Reusability, Portability, Reproducibility, etc…

WS: Sustainable Project Pathways for HPC
Software and Applications

40

