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Abstract

This article describes an efficient implementation and evaluation of a parallel eigen-
solver for computing all eigenvalues of dense symmetric matrices. Our eigensolver
uses a Householder tridiagonalization method, which has higher parallelism and per-
formance than conventional methods when problem size is relatively small, e.g. the
order of 10,000. This is very important for relevant practical applications, where
many diagonalizations for such matrices are required so often. The routine was
evaluated on the 1024 processors HITACHI SR2201, and giving speedup ratios of
about 2-5 times as compared to the ScaLAPACK library on 1024 processors of the
HITACHI SR2201.
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1 Introduction

Parallelizing eigensolvers for symmetric dense matrices have been researched
by many individuals [17,5,7,19,10,1,15,3,20,13]. However, parallelization for
massively parallel processing (MPP) has not received much attention because
(1) there were only few real MPP machines; (2) efficient MPP implementations
are hard to attain. It is especially difficult to attain high performance when
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matrix size is relatively small and processor elements (PEs) are large numbers.
Such a situation is not rarely seen on an MPP system. This is why this paper
will focus on high performance algorithm on MPP systems.

Many kinds of MPP architectures which include hundreds or more PEs are
becoming more available. On these MPP systems, many classical algorithms
such as Jacobi method or divide-and-conquer method [6] will work poorly,
since they cannot be readily adapted to a parallel environment. The reasons
are explained as the following. Jacobi method has the problem of high mes-
sage set-up overheads when PEs increase, even when blocking and over-lapping
techniques [9] are applied. For the divide-and-conquer method, approach to
tridiagonal matrices or QR decomposition can be implemented at high per-
formance on shared memory parallel machines [8]. Nevertheless, the classical
divide-and-conquer approaches cause heavy data communications on the dis-
tributed memory parallel machines when eigenvectors are calculated. Above
all the classical algorithms with the problems above, we want to focus on
one of the well-known classical algorithms, the Householder algorithm. The
main reason is because Householder algorithm can decrease communication
complexity according to the increase of the number of PEs in a certain data
distribution.

Conventional parallel Householder algorithms based on a sequential House-
holder algorithm [19,10,1] have the problem of increasing communication com-
plexity. Conventional algorithms based on the symmetry of the matrix, in-
crease communication complexity in comparison with algorithms that assume
non-symmetry, even though the conventional algorithms have half the com-
putational complexity of non-symmetric ones. In MPP environments, the in-
crease of communication complexity must be considered. For instance, typi-
cal conventional Householder tridiagonalizations using symmetry (called HTS
hereafter) have computational complexity of 4/3-n*/p-6;, and communication
complexity of v, - n*log, p , where n is the problem size, p is the number of
PEs, 6; is an execution time per floating-point computation, and 7, is the time
for communications in the HTS. In the same way as in the HTS algorithms,
we can estimate execution time for Householder tridiagonalizations based on
the non-symmetry (HTN hereafter). These algorithms have a computational
complexity of 8/3 - n?/p - §,, and communication complexity of v, - n?log, p,
where 6, is an execution time per floating-point computation, and -, is the
time for communications in the HTN. From these relations, we will obtain a
threshold size n,4 of the problem where the HTN is faster than the HTS:

3
Nihd < 107/6 - plog, p, (1)

where C.y /s = (71 —72)/(262 = 61). The nypq depends on the number of PEs and
the factor C., /s for communication. For example, if p = 4, then ny,q < 6-C, s,



and if p = 1024, then ny,q < 7680-C./s. This relation shows that (i) nsuq grows
with increasing p; (ii) a lower 7, gives us large values for n,4. The conclusion is
that decreased communication times is important even if the HTN algorithms
have twice the computational complexity in MPP environments. From the
consequence of (i) and (ii), we propose a reduced communication algorithm
assuming non-symmetry. In addition, we can obtain high efficiency even if
matrix size of the proposed algorithm is relatively small.

This paper is organized as follows. The parallel processing environment and
the mathematical notations used throughout this paper is described in Section
2. Section 3 describes an efficient parallel algorithm for computing all eigen-
values on MPP systems. In Section 4, execution time for our routine on the
HITACHI SR2201 along with comparisons to the ScaLAPACK routine on the
same machine is shown. Finally, Section 5 is conclusions regarding this work.

2 Parallel processing environment and several notations

Let us assume that our target parallel computers are constructed with homo-
geneous PEs in processing speed, memory size and communication speed, and
their PEs are labeled in a two-dimensional mesh of size ¢ xr = p, where p is the
number of PEs. Let P,yide myidy, (myide =0,1,...,¢—1, myidy = 0,1, ...,7—1)
be a two-dimensional index for the PEs. In addition, we assume that all PEs
are connected with a network in order to broadcast messages and perform
reduction operations, such as global summation for local data.

In our implementation, the Householder transformation is used for the simi-
larity transformation. That is,

Theorem 1 Given a vector z € R", the following vector v € R" and scalar

a € R exist (See [6]):
(I — auuT)z = (&, &y £0,0-- -, O)T,Where o = ||zks1m]]2- (2)

The vector u = (0,+++,0,&1 & 0, &y, -, &)Y and the scalar o = 1/(0? +
|éx+10]) are a pair of quantities which satisfy the above theorem, and auTu = 2
since ||u|3 = (§pp1£0)?+EF o+ - +E2 = 02402 +2|Epy10] = 2(0*+|Ep10]) =
2/a. The sign of the scalar o is same as that of {1 to minimize catastrophic
cancellation of significant digits when calculating the elements of the vector w.
The reflection (I —auu’)z in the theorem 1 is called Householder transforma-
tion. We represent the reflection (I — auu™)z by H*)(z). This reflection does
not affect the elements &, -, &. (u,«) is the pair to be required to perform
the above reflection H®*)(z) in the formula (2).



Next in this section is the explanation of the notation for the matrix data
distribution. Here, let II be a set of row indices of matrix A, and I' be a set
of column indices, where j € II, I' satisfies the relation of 1 < j < n, and n
is a matrix dimension. These sets are different among each data distribution.
With these sets, we define 2-D distributions called the grid-wise distribution
(Cyeclic, Cyclic) as follows:

[I={myidx +1+ (j — 1)q},
j=1,2,--- last.(myide + 1+ ¢ x |n/q], |n/q|),
I'={myidy + 1+ (j — 1)r},
j=1,2,--- last.(myidy + 1 +r x [n/r|, |n/r]), (3)

where the value of last.(a,b) is defined as

if a <mnthen b+1,
last.(a,b) = (4)
if @ > n then b.

Finally, we tabulate the notation used in this paper in Table 1 in order to
define algorithms.

Table 1

Mathematical notation and its explanation.

Notation Explanation
Qa, i, o scalars € R
T, Y, U vectors € R"

Xi,Mi, Vi  1-th elements in the above vectors x, y, u

Ty a partial vector constructed from the arguments which are indexed
by a set II on the above vector x

A a matrix € R"*"

Aiik a partial vector constructed from the 7, ---, j-th rows and
the k-th column of the above matrix A

An a partial matrix constructed by rows indexed by a set Il and
the 7-th column of the above matrix A

AF) k-th iteration of matrix A




3 Outline of our parallel eigenvalue computation process
3.1 Outline of the entire process

Here, we assume that the data of our matrix are already distributed over the
PEs. Under this condition, our parallel eigensolver calculates eigenvalues using
the following well-known three steps:

ransforming a dense symmetric matrix to a tridiagonal matrix in paralle
1) T forming a d y tri trix to a tridiagonal matrix in parallel
(The tridiagonalization routine).
e-distributing the non-zero elements of the tridiagonal matrix over a S
2) Re-distributing th 1 ts of the tridiagonal matri 11 PE
(The re-distribution routine).
(3) Computing all eigenvalues for the gathered tridiagonal matrix in the step (2)
by the bisection method in parallel (The eigenvalue computation routine).

We use the Householder transformation in the process (1), which is called
Householder-bisection method.

3.2 The tridiagonalization process

We consider the following transformation: A = A to tridiagonal form A™~2),
where A% is defined as in Table 1. This transformation is denoted by H®*) (2)

= H(k)(A,ng)hk). By substituting H*®) = I — auu” for H®)(z) in (k + 1)-th

iteration, the following equations are obtained:

AR+ — (k) A(F) pr(k)
— Ak _ aA(k)uuT — auuT AP — o2uu” AR T

= A® — 20T — uy” + cwuzu”
= Ak _ wy’ + upu” — zu”
=AW —u(y" — pu”) — 2", (5)
where
r=aA®y, T =au"A® 4 =au"x. (6)

For tridiagonalization process, the matrix A is symmetric. Therefore, x = y,
and we can obtain the following formula:

AFFD = A®) (2T — gy — z”. (7)



Note that to execute k-th iteration, we need the column vector Ay.,; which
is obtained from the partial matrix Ay, k..

We have already developed the tridiagonalization and Hessenberg reduction
routines [14] by the Householder transformation. Figure 1 shows our parallel
tridiagonalization algorithm. The routine of Figure 1 reduces communication

¢ Prnyidamyiay 0Wns row set 11 a‘nd (17) if (I have diagonal elements of A)
c column set I" of n X n matrix A.
(1) do k=1, n— 2 then
(2) T (k 6, I') then (18)  broadcast(zy) to
- (k) PEs sharing columns I'
(3) broadcast(Ay ) to (19) else
PEs sharing rows II 20 .
- 0 it
=== endi
(5) rec.eive(Agi)k) (22) do j=k, n
(6)  endif _ (23)  p=aulry enddo
(7) .Computatl(?n of (un, ) (24) global summation of u to
(8) ﬁ}il have diagonal elements of A) PEs sharing rows II
then :
25) do j=k,n
(9) broadcast(ur) to EZG; do i=k, n
PEs sharing columns I (27) if(i €1 .and. j € T) then
g(l)i else wvelup) (28) update AEZH) =
rec.elve ur A(k) — (XT B MUT) — ’UT
(12) endif 0 J j j
(13) do j=k, n (29) endif enddo enddo
A _ k) c remove k from active columns
" glgif'e F) om = om + o An; v and rows
(15) enddo (30) 1_f (kel) T =T — {k} endi‘f
(16) global summation of zy to PEs (31) if (k€I IT =11 — {k} endif
sharing rows II (32) enddo

Fig. 1. Parallel algorithm for the tridiagonalization (the (Cyclic, Cyclic) grid-wise
distribution).

and broadcast time for vector reduction to a ratio of 1/,/p. The same idea
appears in [4,11,10]. Table 2 summarizes the communication complexity for
the algorithm in Figure 1.

Table 2 shows that our algorithm requires at most 5 times reduction oper-
ations per iteration for the tridiagonalization. This means that parallelizing
the tridiagonalization is more difficult than parallelizing other numerical de-
compositions, such as LU decomposition. In addition, we can see that the
communication complexity of our algorithm depends on the topology of PE
grids.

Our process does not depend on the symmetry of the matrix, so that our rou-



Table 2
Communication complexities of reduction operation for the tridiagonalization of
Figure 1 in k-th iteration.

Line No. Total communication Message length Comments
setup times per one communication
(7) [[ogy(r) | 1
(8)—(12) [ logs(7) ] [(n—k+1)/q] if r = g, broadcast
(16) [ logy(q) 1 [(n—k+1)/r]
(17)—(21) [ logy(r) ] [(n—Fk+1)/q] if r = ¢, broadcast
(24) [ logy(r) | 1

tine has twice the computational complexity (8/3n?) as much as that of the
standard process (4/3n?) [11,1,10]. However, our process has a lower commu-
nication complexity than the routine in [11,1,10], since data structures and
data access patterns are simple. This is explained by the following reasons. To
decrease computational complexity, the processes of (25)—(29) in Figure 1 are
improved to update upper tridiagonal part of A. After the improvement, we
have to implement either of the following two methods since lower tridiagonal
part of A is not calculated.

(1) Method for compressed data form: Additional communications and re-structuring
the calculation processes of (13)—(15) are needed.

(2) Method for non-compressed data form: After the modified processes of (25)—
(29) in Figure 1, data re-distribution for lower tridiagonal part of A is
needed.

For instance, the routine in [21] (the ScaLAPACK’s tridiagonalization routine
[1]) is implemented according to the above method (1). By the method (1), the
routine in [21] requires 4 reduction operations to execute the processes (13)-
(15), while our routine requires only 1 reduction operation. Note that blocked
algorithm [21] needs additional communications to perform block update. For
instance, the routine in [21] needs 4 spread communications and 1 reduction
operation, while our routine needs no communication.

Table 3 shows the communication complexities of each implementation method.
The communication complexities depend on the implementation of commu-
nication methods in general. The communication complexities of Table 3 are
calculated by using the implementation of ScaLAPACK][21] for the method
(1), and all-to-all communication for the method (2).

The communication complexities of Table 3 indicate that the method (2) has
O(n?) total communication amount, and this is much higher complexity in
comparison with the other implementations. Therefore, the implementation



Table 3

Communication complexities of matrix-vector product for the tridiagonalization.

Implementation Communication times Total communication volume
Method (1) 4 n | logy(r) | 2 n? [ logy(r)/q ]
Method (2)  n [logy(r) | +n(p—1) n?/2 [logy(r)/q ]
+ (p = 1)(n’/(3p) +n*/(2p))
Figure 1 n [ logy(r) | n?/2 [ logy(r)/q |

of the method (2) is not addressed.

Let ¢, be a time per floating-point operation in the method of Figure 1, and ¢,
be a time per floating-point operation in the implementation method (1). Let
a be a message setup time, and [ be a communication time per floating-point
data. By using these variables, we can estimate a condition that the execution
time for the method of Figure 1 is faster than that of the method (1):

4n’[3 - (21 — ¢2) < logy (r) - (3 +nf3/q), (8)

where the values of n, r, ¢, & and 8 are positive. The condition of (8) will be
achieved when 2¢; — ¢ < 0. This indicates that the floating-point operation
factor of ¢, for the method (1) can greatly affect the condition. Hence, if the
floating-point operation of Figure 1 is 2 times faster than that of the method
(1), the method of Figure 1 is always faster than that of the method (1).
Note that we can implement the method of Figure 1 at high performance with
comparison to the method (1), since the kernel of the method of Figure 1 does
not use the special data structure for symmetric matrices.

For these reasons, we expect that our routine is faster than conventional rou-
tines when the number of PEs increases, and adaptability of the real problems
is high. In addition, our routine does not support block-cyclic distribution.
The block-cyclic distribution causes a poor load balance when n/p is small.
This condition easily occurs on MPP, hence, such distribution is not suitable
for parallel routines for MPP.

3.8 The re-distribution process

In order to have the entire tridiagonal matrix on each PE, the grid-wise (Cyclic,
Cyclic) distributed elements are re-distributed in this process.



3.4 The eigenvalue computation process

The bisection method is implemented to compute the eigenvalues. Implemen-
tation of the bisection method is the same as the routine BISECT in reference
[18].

In our implementation, nbi, which is the number of the iterations for improving
the accuracy when an eigenvalue is isolated, is set to 200 to calculate all
eigenvalues. Note that the routine does not iterate 200 times, since the routine
is finished when narrowing section is small enough (such as machine epsilon).
Parallelizing the routine is easy because we can parallelize the routine with
different initial values.

4 Performance evaluation

We have implemented our parallel eigensolver on the HITACHI SR2201, and
evaluated its performance. The HITACHI SR2201 system is a distributed
memory, message-passing parallel machine of the MIMD class. It is composed
of 1024 PEs, each having a pseudo vector processor [2] and 256 Megabytes of
main memory, interconnected via communication network that has the topol-
ogy of a three-dimensional hyper-crossbar. The peak interprocessor commu-
nications bandwidth is 300 Mbytes/s in each direction. The communication
library used for the SR2201 is the MPI (Message Passing Interface). We used
the HITACHI Optimized Fortran90 V02-06-/D compiler. The compile options
we used were -rdma -W0,’OPT(0O(SS))".

4.1 Performances in the Frank matrix

To evaluate performances and to check the program, we calculated eigenvalues
and eigenvectors for the following matrix:

An = (aij), Qi =N — max(i,j) + 1. (9)

Its eigenvalues are known to be:

A = k=1,2,...,n. (10)




4.1.1 Performance for calculating all ergenvalues

We measured the execution time of an order 8000 all eigenvalue problem with
the SR2201 on 4-1024 PEs. Table 4 shows the execution time.

Table 4
Calculation times of 8000 eigenvalues in seconds. (nbi = 200, the maximal relative
error with respect to the analytical values is 0.2493 x 10~7)

PEs 4 8 16 32

(Grid) (2x2) (2x4) (4x4) (4x8)

Tridiagonalization 1962 989.5 490.3 254.9
(Ratio %) (95.1%) (94.6%) (94.0%) (93.8%)
Re-distribution 0.002 0.004 0.005 0.006

Bisection 98.57 55.61 30.86 16.79
(Ratio %) (4.7%)  (5.3%)  (5.9%) (6.1%)
Total time 2061 1045 521.2 271.7
Speedup 1.00 1.97 3.95 7.58
PEs 64 128 256 1024
(Grid) (8x8)  (8x16) (16x16) (32x32)

Tridiagonalization | 119.0 70.42 47.90 63.16
(Ratio %) (92.1%) (92.7%) (93.9%) (98.6%)
Re-distribution 0.011 0.013 0.025 0.082

Bisection 10.15 5.469 3.060 0.783
(Ratio %) (7.8%)  (7.2%) (6.0%) (1.2%)

Total time 129.2 75.90 50.99 64.02
Speedup 15.9 27.1 40.4 32.1

From Table 4, the tridiagonalization process occupies the largest part (more
than 90%) of the total parallel execution time, while the time for re-distribution
took 0.2% at most. Therefore, improvement of the re-distribution routine is
not an issue. Notwithstanding its scalar implementation, the time for calcu-
lation of the eigenvalues took only about 8% of the total time. Therefore,
improvement of the routine for the eigenvalue calculation is not necessary on
this machine. Finally, we can conclude that fast parallel tridiagonalization is
the crucial part and the efficiency of tridiagonalization will decide the total
performance for computing all eigenvalues.

Next, Figure 2 shows the performances in FLOPS by the tridiagonalization
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routine for 4-1024 PEs in Figure 2. From Figure 2 it is clear that the per-
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Fig. 2. Performances in parallel tridiagonalization (MFLOPS, the percentages in
parentheses are percentages of the theoretical peak performance). Total calculation
amount of 8/3n3 is used for computing the MFLOPS values.

formance for 4 PEs saturates at 75% of the theoretical peak performance of
300 x 4 MFLOPS. The saturated performance for 1024 PEs was 178 GFLOPS
with our algorithm. Figure 2 also shows that the efficiency decreases as the
number of PEs increases. One of the reasons is because when the number
of PEs increases, the ratio of calculation time to the total execution time
decreases.

4.2 Comparison to the ScaLAPACK

4.2.1 FEzperimental results

Table 6 and Table 7 show execution time of ScaLAPACK tridiagonalization
(hereafter SLP TRD) routine and ours (hereafter our TRD) respectively. We
use the HITACHI optimized ScaLAPACK version 1.2 [12]. Its communica-
tion library used is PVM, and the PBLAS which is computational kernel for
ScaLAPACK is optimized by HITACHI limited.

The SLP TRD is implemented by using block-cyclic distribution, blocked al-
gorithm, and symmetry of the matrix [21]. By using blocked algorithm, size
of blocking (BL) can greatly affect performance of the ScaLAPACK. Table 5
shows this fact. From the result of Table 5, we found that varying BL speeds
up 3.2 times with respect to the execution time in BL = 1.
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According to [12], if the problem size n is less than 4000, BL should be 60,
and if n is over 4000, desirable BL of 100 is a good choice on the SR2201.
Considering these values, we evaluated the performance of SLP TRD routines
under BL = {40, 60, 80, 100, 120} to find which BL gives the best performance.
For PE grid, squared grid of \/p x /p is best according to [12]. We tried to
measure execution time in the PE grid when number of PEs is large. When
the number of PE is small, such as 4, 32, and 64, we measured execution
time in all combinations for the PE grid to find which PE grid gives the best
performance. The size of BL and the execution time are included in Tables 6
and 7.

Table 5
Execution time of the ScaLAPACK for varying BL in seconds. (SR2201, n = 8000,
256 PEs (PE grid:16x16))

BL 1 2 5 10 15 20 25 30

SLP TRD 517.37 296.53 201.97 174.02 171.50 156.86 157.28 155.70

Speedup 1.00 1.74 2.56 2.97 3.01 3.29 3.28 3.32

Figure 3 shows execution time for various number of PEs. From Figure 3(a),
our TRD was about 2-6 times as fast as SLP TRD for a 2000 x 2000 matrix.
On the other hand, from Figure 3(b), when matrix dimension was 8000, SLP
TRD was faster than our TRD on 4-16 PEs. However, when the number of
PEs increases, our TRD was faster than SLP TRD. The threshold number of
PEs was about 16.

Figure 4 shows speedup ratio for a 8000 x 8000 matrix. From Figure 4, we

could find the fact that our TRD obtained 40 times speedup, while SLP TRD
obtained 10 times speedup only.

4.2.2  Discussion
From the results in Table 6 and Table 7, the conclusion is that if local matrix
sizes were small enough, execution time of our TRD were 2-5 times faster

than the SLP TRD. This is caused by the following two reasons:

(I) Our TRD has better load balance than the SLP TRD, since our TRD is
permanently set to BL = 1 while SLP TRD allows to the arbitrary values;

12



Table 6

Performance for tridiagonalization I (SR2201). Unit is in second.

(a) Case of PE =4

Size SLP TRD (Grid,BL) Our TRD (Grid) SLP / Ours
100 0.02 (1x4, 100) 0.056 (2x2) 0.35
200 0.48 (1x4, 100) 0.133 (2x2) 3.6
400 1.73 (1x4, 40) 0.475 (2x2) 3.6
800 6.01 (1x4, 40) 2.454 (2x2) 2.4
1000 9.32 (2x2, 40) 3.785 (2x2) 2.4
2000  41.90 (2x2, 40) 26.937 (2x2) 1.5
4000 231.10 (2x2, 40) 242.010 (2x2) 0.95
8000  1422.69 (2x2, 100) 1962.512 (2x2) 0.72
(b) Case of PE = 16
Size SLP TRD (Grid,BL) Our TRD (Grid) SLP /Ours
100 0.03 (1x16, 100) 0.082 (4x4) 0.36
200 0.82 (8x2, 100) 0.195 (4x4) 4.2
400 1.92 (1x16, 40) 0.419 (4x4) 4.5
800 5.48 (4x4, 40) 1.733 (4x4) 3.1
1000 7.53 (28, 40) 1.824 (4x4) 4.1
2000 23.00 (4x4, 40) 8.649 (4x4) 2.6
4000 92.21 (4x4, 60) 56.239 (4x4) 1.6
8000  474.49 (4x4, 60) 490.346 (4x4) 0.96
(c) Case of PE = 64
Size SLP TRD (Grid,BL) Our TRD (Grid) SLP / Ours
100 0.21 (4x16, 100) 0.153 (8x8) 1.3
200 0.98 (1x64, 100) 0.278 (8x38) 3.5
400 2.82 (4x16, 100) 0.638 (8x8) 4.4
800 6.60 (8x8, 40) 1.402 (8x8) 4.7
1000 8.79 (8x8, 40) 1.612 (8x8) 5.4
2000 20.73 (8x8, 40) 5.105 (8x8) 4.0
4000 57.6 (8x8, 40) 19.631 (8x8) 2.9
8000 210.49 (8x8, 60) 119.065 (8x8) 1.7
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Table 7

Performance for tridiagonalization IT (SR2201). Unit is in second.

(a) Case of PE =128
Size  SLP TRD (Grid,BL) Our TRD (Grid) SLP / Ours

200 1.93 (8x16, 100) 0.462 (8x16) 4.1
400 3.78 (8x16, 60) 0.860 (8x16) 4.3
800 7.68 (8x16, 80) 1.650 (8x16) 4.6
1000  9.74 (8x16, 100) 2.109 (8x16) 4.6
2000 22.17 (8x16, 40) 5.122 (8x16) 4.3
4000 54.13 (8x16, 40) 15.420 (8x16) 3.5
8000  162.01 (8x16, 40) 70.422 (8x16) 2.3
10000 245.60 (8x16, 40)  123.891 (8x16) 1.9

(b) Case of PE = 256
Size  SLP TRD (Grid,BL) Our TRD (Grid) SLP / Ours

400 5.69 (16x16, 60) 1.373 (16x16) 4.1
800 10.17 (16x16, 80) 2.480 (16x16) 4.1
1000 12.89 (16x16, 100)  3.217 (16x16) 4.0
2000  30.12 (16x16, 40) 5.964 (16x16) 5.0
4000  67.29 (16x16, 40)  14.338 (16x16) 4.6
8000  161.76 (16x16, 100)  47.906 (16x16) 3.3
10000 226.11 (16x16,40)  79.889 (16x16) 2.8
20000  774.10 (16x16, 60)  454.267 (16x16) 1.7

(c) Case of PE = 512

Size  SLP TRD (Grid,BL) Our TRD (Grid) SLP / Ours

1000 26.34 (16x32, 40) 4.552 (16x32) 5.7
2000  48.76 (16x32, 80) 9.613 (16x32) 5.0
4000 111.93 (16x32, 40)  20.484 (16x32) 5.4
8000  265.77 (16x32, 40)  52.397 (16x32) 5.0
10000  325.76 (16x32, 60)  81.450 (16x32) 3.9
20000  827.96 (16x32, 40)  302.541 (16x32) 2.7
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Fig. 3. Execution time for SLP TRD and Our TRD in the tridiagonalization
(SR2201).

(IT) Our TRD has a lower communication complexity than the SLP TRD be-
cause of the non-symmetry in our TRD.

As for the reason (I), Katagiri and Kanada [16], Stranzdings [22], and Hen-
drickson et al. [10] point out the following. Parallel libraries must be con-
structed by using different blocking factors of block length in data distribution
(BDD) and block length in blocking algorithm (BBA). The BBA does not
depend on the data distribution. Therefore, the value of BDD must be taken
as small as possible from the sake of parallel performance. In ScaLAPACK,
however, the value of BDD is equal to BB A because of easy implementation
of their libraries. This implementation policy causes poor load balancing on
MPP environments. Our process supports (Cyclic, Cyclic) distribution (the
value of BDD is 1) only. Therefore, our routine never suffers from poor load
balancing.
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Fig. 4. Speedup ratios between SLP TRD and Our TRD for the tridiagonalization
(n = 8000, SR2201).

The reason (IT) shows the fact that when n/p is very small, algorithms by the
HTN will be faster than the HT'S. As already mentioned, the HTN algorithms
have less communication with respect to the HTS. Of course, when n/p is
large enough, execution time will mainly depend on computation time since
computational complexity is O(n?). This can be explained by Table 6(a), p =
4, n = 8000 case. In this case, SLP TRD was about 1.3 times faster than our
TRD. However, when the number of PEs increases, a larger matrix is needed
to exceed the performance of our TRD. For example, Table 6(a) shows that
the execution time of a 4000 x 4000 matrix was 231 seconds (SLP TRD) vs.
242 seconds (our TRD), and the ratio of executions was 0.95, and Table 6(b)
shows that the execution time of a 8000 x 8000 matrix were 474 seconds (SLP
TRD) vs. 490 seconds (our TRD), and the ratio of executions was 0.96. This
means that to exceed our TRD, matrix sizes must be large in SLP TRD, and
hence, the execution time will also be large.

From Table 6(a) (p = 4, n = 800, and n = 8000), we can determine the factors
in the formula (1): §; ~ 4268/(8000)3, v; ~ 3.58 x 1076, &, ~ 5888/(8000)3,
and v, ~ 3.83 x 1077. By using these factors, we will obtain the factor of
C,s ~ 1011, and this shows a fact that the C. s can have a considerable
value. This factor affects execution time for an application. In applications
in the chemical field, 6000 or more consecutive diagonalizations are required
(23], which cannot be executed in parallel because each diagonalization de-
pends on previous ones. Therefore in such applications, the execution time
per diagonalization is limited, since total execution time becomes enormous.
Even if execution time per one diagonalization is 100 seconds, total execution
time will be about 166 hours (about 7 days!) From the results in Table 6 and
Table 7, diagonalizations time under 100 seconds were about 2-5 times faster
than SLP TRD. This shows that 35 days diagonalizations by using SLP TRD

will be reduced to 7 days by our approach. Therefore, executing small size
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diagonalization at high speed is very important. For such applications, our
routine will be a more effective tool than the conventional routines.

5 Conclusion

The authors formulated, implemented and evaluated a parallel routine which
can calculate all eigenvalues on an MPP system. By using the Householder
tridiagonalization based on a non-symmetry algorithm and the (Cyclic, Cyclic)
data distribution, we could obtain a better performance than the ScaLAPACK
routine which is widely used as a parallel library. This effect becomes stronger
when the number of PEs increases. Therefore, our process is very efficient on
MPPs.

Our algorithm can attain high performance on an MPP system with as many
as 1024 processors, even when the order of the matrices is relatively small, e.g.
the order of 10,000. This is very important for relevant practical applications,
where many diagonalizations for such matrices are required so often. Perform-
ing each diagonalization on one PE is not an essential solution because it can
be a hot-spot by the sequential processing of the diagonalization. Therefore,
performing parallel diagonalization with small problem at high performance
is crucial.

In RISC based processors, it is known that blocking algorithms are more effi-
cient than non-blocking algorithms [21]. However, blocking algorithms increase
communication complexity for tridiagonalization [16]. In addition, using sym-
metry requires complex communication. Therefore, efficient inner processor
algorithms and inter processor algorithms are different. To accomplish high
performance, we have to analyze the parallel performance theoretically. The
analysis and implementation of non-blocking vs. blocking algorithms, and sym-
metry vs. non-symmetry algorithms are the parts of future work.
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